68  
dotnet
Поиск  
Always will be ready notify the world about expectations as easy as possible: job change page
Nov 27, 2023

Insert 1 million dummy product data into SQL Server

Автор:
Источник:
Просмотров:
3462

Use the Bogus library to generate and insert 1 million dummy product data into the SQL Server database

C#

We need to create 1 million dummy product data into the SQL Server database, which can be used for development or performance testing purposes.

The Project

The project is a console application using .NET 6.0 as a framework.

The project name is InsertMillionRecords.

InsertMillionRecords

We will use the Bogus package to generate random product data.

We use Entity Framework Core as the data access layer.

Entity Framework Core

Product Model

To model the Products table in the database, we need to create the Product class:

public class Product
{
    public int Id { get; set; }
    public string Code { get; set; }
    public string Description { get; set; }
    public string Category { get; set; }
    public decimal Price { get; set; }
}

Entity Framework Data Context

Next, we create the Entity Framework data context class:

using Microsoft.EntityFrameworkCore;

namespace InsertMillionRecords;
public class DataContext : DbContext
{
    public DataContext(DbContextOptions<DataContext> options) : base(options)
    {
    }

    public DbSet<Product> Products { get; set; }
}

The Program.cs File

Initialize Data Context

First, we need to initialize the data context:

var connectionString = "Data Source=localhost; Initial Catalog=Product; Integrated Security=True";
var contextOptionsBuilder = new DbContextOptionsBuilder<DataContext>();
contextOptionsBuilder.UseSqlServer(connectionString);
var context = new DataContext(contextOptionsBuilder.Options);

We've made things simpler by hardcoding the connection string. No need to worry about it!

Create Database

Every time the script runs, we need to ensure that the database is recreated.

await context.Database.EnsureDeletedAsync();
await context.Database.EnsureCreatedAsync();

Setup Bogus Faker Class

First, we initialize the Faker<Product> object.

Next, we use the RuleFor() method to set up each property of the Product class.

The self-explained code:

var faker = new Faker<Product>();
faker.RuleFor(p => p.Code, f => f.Commerce.Ean13());
faker.RuleFor(p => p.Description, f => f.Commerce.ProductName());
faker.RuleFor(p => p.Category, f => f.Commerce.Categories(1)[0]);
faker.RuleFor(p => p.Price, f => f.Random.Decimal(1, 1000));

Generate 1 Million Dummy Product Data

var products = faker.Generate(1_000_000);

The products variable now contains 1 million of product data!

Create 10 Batches of Insertion

There is a possibility that a timeout will occur if we insert 1 million records at a time.

Therefore, we will split the process into 10 batches. Each batch will insert 100K records at a time.

var batches = products
    .Select((p, i) => (Product: p, Index: i))
    .GroupBy(x => x.Index / 100_000)
    .Select(g => g.Select(x => x.Product).ToList())
    .ToList();

Insert Each Batch into the Database

var count = 0;
foreach (var batch in batches)
{
    batchCount++;
    Console.WriteLine($"Inserting batch {count} of {batches.Count}...");

    await context.Products.AddRangeAsync(batch);
    await context.SaveChangesAsync();
}

The complete code of the Program.cs file:

using Bogus;
using InsertMillionRecords;
using Microsoft.EntityFrameworkCore;
using System.Diagnostics;

// initialize data context
var connectionString = "Data Source=localhost; Initial Catalog=Product; Integrated Security=True";
var contextOptionsBuilder = new DbContextOptionsBuilder<DataContext>();
contextOptionsBuilder.UseSqlServer(connectionString);
var context = new DataContext(contextOptionsBuilder.Options);

// create database
await context.Database.EnsureDeletedAsync();
await context.Database.EnsureCreatedAsync();

// setup bogus faker
var faker = new Faker<Product>();
faker.RuleFor(p => p.Code, f => f.Commerce.Ean13());
faker.RuleFor(p => p.Description, f => f.Commerce.ProductName());
faker.RuleFor(p => p.Category, f => f.Commerce.Categories(1)[0]);
faker.RuleFor(p => p.Price, f => f.Random.Decimal(1, 1000));

// generate 1 million products
var products = faker.Generate(1_000_000);

var batches = products
    .Select((p, i) => (Product: p, Index: i))
    .GroupBy(x => x.Index / 100_000)
    .Select(g => g.Select(x => x.Product).ToList())
    .ToList();

// insert batches
var stopwatch = new Stopwatch();
stopwatch.Start();

var count = 0;
foreach (var batch in batches)
{
    count++;
    Console.WriteLine($"Inserting batch {count} of {batches.Count}...");

    await context.Products.AddRangeAsync(batch);
    await context.SaveChangesAsync();
}

stopwatch.Stop();

Console.WriteLine($"Elapsed time: {stopwatch.Elapsed}");
Console.WriteLine("Press any key to exit...");

Run the Application

Now, let’s run the application. We can use Release mode to fasten the process.

It took 1 minute and 9 seconds on my machine:

Inserting batch

And now we have 1 million records in the Products table:

Products table

I am planning to use these dummy data for testing the full-text search feature in SQL Server.

The source code of this post can be found here: https://github.com/juldhais/InsertMillionRecords

Thanks for reading 👍

Похожее
Sep 14, 2023
Author: Mina Pêcheux
Interfaces are at the heart of the “composition-over-inheritance” paradigm — let’s see what that means! As you probably know, C# is a statically typed language. And as such, it is very helpful with type-checking and safe data conversions. Your IDE...
Apr 24, 2022
Author: Habeeb Ajide
What Is Caching? Caching is a performance optimization strategy and design consideration. Caching can significantly improve app performance by making infrequently changing (or expensive to retrieve) data more readily available. Why Caching? To eliminate the need to send requests towards...
Jul 25
Author: N Nikitins
Table of contents API design style gRPC GraphQL REST Database Microsoft SQL Server PostgreSQL MySQL MongoDB Couchbase Cassandra Caching mechanisms Redis Memcached NCache Microsoft.Extensions.Caching.Memory (MemoryCache) Logging and monitoring ELK Stack (Elasticsearch, Logstash, and Kibana) Serilog NLog Application Insights (part of...
Nov 30, 2023
Author: Dev·edium
QUIC (Quick UDP Internet Connections) is a new transport protocol for the Internet that runs on top of User Datagram Protocol (UDP) QUIC (Quick UDP Internet Connections) is a new transport protocol for the Internet that runs on top of...
Написать сообщение
Тип
Почта
Имя
*Сообщение