Поиск  
Always will be ready notify the world about expectations as easy as possible: job change page
Aug 8, 2024

Exploring microservices Saga and Compensation patterns with C# example

Exploring microservices Saga and Compensation patterns with C# example
Автор:
Источник:
Просмотров:
1223

Introduction

Microservices, like a team of superheroes, are small, independent services that work together to create powerful applications. Sometimes, these services need to talk to each other in a specific order, and that’s where the microservices saga and compensation pattern come into play.

In this article, I will delve into the intricacies of using the Saga and Compensation patterns to design your microservice using C#.NET examples.

The microservices Saga

Imagine a story unfolding with multiple chapters, each chapter telling a part of the tale. Similarly, in microservices, a saga is a sequence of steps that must be performed in a specific order to achieve a goal.

C# example:

Let's say we have an online shopping system with two microservices: one for inventory and another for payments. When a user buys a product, the saga might involve checking if the item is in stock, reserving it, and then processing the payment.

public class OrderSaga
{
    private readonly InventoryService _inventoryService;
    private readonly PaymentService _paymentService;

    public OrderSaga(InventoryService inventoryService, PaymentService paymentService)
    {
        _inventoryService = inventoryService;
        _paymentService = paymentService;
    }

    public async Task PlaceOrderAsync(OrderDetails order)
    {
        try
        {
            // Step 1: Check inventory
            await _inventoryService.CheckInventoryAsync(order.ProductId, order.Quantity);
            // Step 2: Reserve inventory
            await _inventoryService.ReserveInventoryAsync(order.ProductId, order.Quantity);
            // Step 3: Process payment
            await _paymentService.ProcessPaymentAsync(order.Amount);
        }
        catch (Exception ex)
        {
            // Handle errors or compensate for failed steps
            Console.WriteLine($"Order processing failed: {ex.Message}");
            // Compensate by releasing reserved inventory
            await _inventoryService.ReleaseInventoryAsync(order.ProductId, order.Quantity);
        }
    }
}

In this example, the PlaceOrderAsync method represents our saga. It checks inventory, reserves the item, and processes payment. If any step fails, it catches the error and compensates by releasing the reserved inventory.

Compensation Pattern

Imagine you accidentally knock over a tower of blocks you were building. The compensation pattern is like rebuilding that tower step by step to fix what went wrong.

C# example:

Let's modify our previous example to include explicit compensation steps for each action.

public class OrderSagaWithCompensation
{
    private readonly InventoryService _inventoryService;
    private readonly PaymentService _paymentService;    

    public OrderSagaWithCompensation(InventoryService inventoryService, PaymentService paymentService)
    {
        _inventoryService = inventoryService;
        _paymentService = paymentService;
    }    

    public async Task PlaceOrderAsync(OrderDetails order)
    {
        try
        {
            // Step 1: Check inventory
            await _inventoryService.CheckInventoryAsync(order.ProductId, order.Quantity);            
            // Step 2: Reserve inventory
            await _inventoryService.ReserveInventoryAsync(order.ProductId, order.Quantity);            
            // Step 3: Process payment
            await _paymentService.ProcessPaymentAsync(order.Amount);
        }
        catch (Exception ex)
        {
            // Handle errors
            Console.WriteLine($"Order processing failed: {ex.Message}");            
            // Compensate for failed steps
            await Compensate(order);
        }
    }    

    private async Task Compensate(OrderDetails order)
    {
        // Compensate by releasing reserved inventory
        await _inventoryService.ReleaseInventoryAsync(order.ProductId, order.Quantity);        
        // Compensate by refunding payment
        await _paymentService.RefundPaymentAsync(order.Amount);
    }
}

In this version, the Compensate method explicitly handles the compensation steps for each action, releasing the reserved inventory and refunding the payment.

Benefits and disadvantages

Benefits:

  1. Resilience:
    If one microservice fails, the saga and compensation pattern help maintain system integrity.
  2. Flexibility:
    Microservices can evolve independently, allowing for continuous improvement.
  3. Scalability:
    Different microservices can scale independently based on their specific needs.

Disadvantages:

  1. Complexity:
    Implementing sagas and compensation can be complex, requiring careful design and management.
  2. Consistency:
    Achieving consistency in a distributed environment can be challenging.
  3. Latency:
    Coordinating actions between microservices may introduce latency.

Conclusion

Microservices sagas and compensation patterns are like a well-choreographed dance, ensuring that even if a step falters, the performance continues smoothly. While they bring resilience and flexibility, they also introduce complexity. Like superheroes, microservices require a balance of power and responsibility to create robust and efficient applications.

So, just like assembling LEGO blocks, developers carefully craft microservices sagas to tell a story, ensuring that each step contributes to a successful ending.

Похожее
Feb 6, 2024
Author: Naresh Waswani
In a Microservices Architecture, services typically collaborate with each other to serve business use cases. These services may have their own software characteristics in terms of Availability, Scalability, Elasticity, etc. but there will always be a situation when the downstream...
Jan 31, 2023
Author: Arkaprava Sinha
Today we will see, how to enable Logging directly to Loki via Serilog for a .NET Core Microservice and visualize the logs in Grafana.   Before we start, What is Loki? Loki is a horizontally scalable, highly available, multi-tenant log...
Sep 14, 2023
Author: Rico Fritzsche
Balancing Business Needs: Evaluating Architecture in Domain-Driven Design One topic has come up again and again over the years, sometimes more, sometimes less, in conversations among developers: What’s the best way to modularize software? As a longtime software developer, I’ve...
Oct 25, 2024
Author: Bhushan Kadam
In today's digital age, choosing the right architecture is critical to the success of your web application. Microservices vs. Monolithic Architecture are two popular choices, each with its own set of advantages and disadvantages. In this blog, We will explore...
Написать сообщение
Тип
Почта
Имя
*Сообщение