
M A N N I N G

Mike Cantelon
Marc Harter
T.J. Holowaychuk
Nathan Rajlich

FOREWORD BY Isaac Z. Schlueter

Node.js in Action
MIKE CANTELON

MARC HARTER
T.J. HOLOWAYCHUK

NATHAN RAJLICH

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Renae Gregoire
20 Baldwin Road Copyeditor: Andy Carroll
PO Box 261 Proofreader: Katie Tennant
Shelter Island, NY 11964 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617290572
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

www.manning.com

brief contents
PART 1 NODE FUNDAMENTALS...1

1 � Welcome to Node.js 3
2 � Building a multiroom chat application 14
3 � Node programming fundamentals 37

PART 2 WEB APPLICATION DEVELOPMENT WITH NODE69
4 � Building Node web applications 71
5 � Storing Node application data 97
6 � Connect 123
7 � Connect’s built-in middleware 145
8 � Express 176
9 � Advanced Express 202

10 � Testing Node applications 242
11 � Web application templating 264

PART 3 GOING FURTHER WITH NODE293
12 � Deploying Node applications and maintaining uptime 295
13 � Beyond web servers 309
iii

14 � The Node ecosystem 343

contents
foreword xiii
preface xv
acknowledgments xvi
about this book xviii
about the cover illustration xx

PART 1 NODE FUNDAMENTALS..1

1 Welcome to Node.js 3
1.1 Built on JavaScript 4
1.2 Asynchronous and evented: the browser 5
1.3 Asynchronous and evented: the server 7
1.4 DIRTy applications 8
1.5 DIRTy by default 10

Simple async example 11 � Hello World HTTP server 12
Streaming data 12

1.6 Summary 13

2 Building a multiroom chat application 14
2.1 Application overview 15
2.2 Application requirements and initial setup 17

Serving HTTP and WebSocket 17 � Creating the application
file structure 18 � Specifying dependencies 19 � Installing
v
dependencies 19

CONTENTSvi

2.3 Serving the application’s HTML, CSS, and client-side
JavaScript 20
Creating a basic static file server 20 � Adding the HTML and CSS
files 23

2.4 Handling chat-related messaging using Socket.IO 25
Setting up the Socket.IO server 26 � Handling application
scenarios and events 27

2.5 Using client-side JavaScript for the application’s user
interface 31
Relaying messages and name/room changes to the server 32
Showing messages and available rooms in the user interface 33

2.6 Summary 36

3 Node programming fundamentals 37
3.1 Organizing and reusing Node functionality 38

Creating modules 40 � Fine-tuning module creation using
module.exports 42 � Reusing modules using the node_modules
folder 43 � Caveats 44

3.2 Asynchronous programming techniques 46
Handling one-off events with callbacks 46 � Handling repeating
events with event emitters 50 � Challenges with asynchronous
development 57

3.3 Sequencing asynchronous logic 58
When to use serial flow control 59 � Implementing serial flow
control 61 � Implementing parallel flow control 63
Leveraging community tools 65

3.4 Summary 67

PART 2 WEB APPLICATION DEVELOPMENT WITH NODE69

4 Building Node web applications 71
4.1 HTTP server fundamentals 72

How Node presents incoming HTTP requests to developers 73
A basic HTTP server that responds with “Hello World” 74
Reading request headers and setting response headers 75
Setting the status code of an HTTP response 75

CONTENTS vii

4.2 Building a RESTful web service 76
Creating resources with POST requests 77 � Fetching resources
with GET requests 79 � Removing resources with DELETE
requests 80

4.3 Serving static files 81
Creating a static file server 82 � Handling server errors 85
Preemptive error handling with fs.stat 86

4.4 Accepting user input from forms 87
Handling submitted form fields 87 � Handling uploaded files
using formidable 90 � Calculating upload progress 94

4.5 Securing your application with HTTPS 94
4.6 Summary 96

5 Storing Node application data 97
5.1 Serverless data storage 98

In-memory storage 98 � File-based storage 99

5.2 Relational database management systems 102
MySQL 102 � PostgreSQL 110

5.3 NoSQL databases 112
Redis 112 � MongoDB 117 � Mongoose 119

5.4 Summary 121

6 Connect 123
6.1 Setting up a Connect application 124
6.2 How Connect middleware works 125

Middleware that does logging 126 � Middleware that responds
with “hello world” 126

6.3 Why middleware ordering matters 127
When middleware doesn’t call next() 128 � Using middleware
order to perform authentication 128

6.4 Mounting middleware and servers 129
Middleware that does authentication 130 � A middleware
component that presents an administration panel 131

CONTENTSviii

6.5 Creating configurable middleware 133
Creating a configurable logger middleware component 133
Building a routing middleware component 135
Building a middleware component to rewrite URLs 137

6.6 Using error-handling middleware 138
Connect’s default error handler 139 � Handing application errors
yourself 139 � Using multiple error-handling middleware
components 141

6.7 Summary 144

7 Connect’s built-in middleware 145
7.1 Middleware for parsing cookies, request bodies,

and query strings 146
cookieParser(): parsing HTTP cookies 147 � bodyParser():
parsing request bodies 150 � limit(): request body limiting 151
query(): query-string parser 153

7.2 Middleware that implements core web application
functions 154
logger(): logging requests 155 � favicon(): serving a
favicon 157 � methodOverride(): faking HTTP methods 158
vhost(): virtual hosting 160 � session(): session
management 161

7.3 Middleware that handles web application security 165
basicAuth(): HTTP Basic authentication 165 � csrf(): cross-site
request forgery protection 167 � errorHandler(): development error
handling 168

7.4 Middleware for serving static files 170
static(): static file serving 170 � compress(): compressing static
files 172 � directory(): directory listings 174

7.5 Summary 175

8 Express 176
8.1 Generating the application skeleton 178

Installing the Express executable 180 � Generating the
application 180 � Exploring the application 180

8.2 Configuring Express and your application 183
Environment-based configuration 183

CONTENTS ix

8.3 Rendering views 185
View system configuration 185 � View lookup 188 � Exposing
data to views 189

8.4 Handling forms and file uploads 194
Implementing the photo model 194 � Creating a photo upload
form 194 � Showing a list of uploaded photos 197

8.5 Handling resource downloads 198
Creating the photo download route 198 � Implementing the photo
download route 199

8.6 Summary 201

9 Advanced Express 202
9.1 Authenticating users 203

Saving and loading users 204 � Registering new users 209
Logging in registered users 214 � User-loading middleware 217

9.2 Advanced routing techniques 219
Validating user content submission 219 � Route-specific
middleware 223 � Implementing pagination 225

9.3 Creating a public REST API 229
Designing the API 229 � Adding Basic authentication 229
Implementing routing 230 � Enabling content negotiation 234

9.4 Error handling 236
Handling 404 errors 236 � Handling errors 238

9.5 Summary 241

10 Testing Node applications 242
10.1 Unit testing 243

The assert module 244 � Nodeunit 247 � Mocha 249
Vows 254 � Should.js 256

10.2 Acceptance testing 258
Tobi 259 � Soda 260

10.3 Summary 262

11 Web application templating 264
11.1 Using templating to keep code clean 265

Templating in action 266

CONTENTSx

11.2 Templating with Embedded JavaScript 269
Creating a template 269 � Manipulating template data using EJS
filters 271 � Integrating EJS into your application 274
Using EJS for client-side applications 275

11.3 Using the Mustache templating language with
Hogan 276
Creating a template 276 � Mustache tags 277 � Fine-tuning
Hogan 279

11.4 Templating with Jade 280
Jade basics 281 � Logic in Jade templates 284 � Organizing
Jade templates 287

11.5 Summary 290

PART 3 GOING FURTHER WITH NODE293

12 Deploying Node applications and maintaining uptime 295
12.1 Hosting Node applications 295

Dedicated and virtual private servers 297 � Cloud hosting 297

12.2 Deployment basics 299
Deploying from a Git repository 300 � Keeping Node
running 300

12.3 Maximizing uptime and performance 301
Maintaining uptime with Upstart 302 � The cluster API: taking
advantage of multiple cores 304 � Hosting static files and
proxying 306

12.4 Summary 307

13 Beyond web servers 309
13.1 Socket.IO 310

Creating a minimal Socket.IO application 310 � Using Socket.IO
to trigger page and CSS reloads 312 � Other uses of
Socket.IO 315

13.2 TCP/IP networking in depth 316
Working with buffers and binary data 316 � Creating a TCP
server 318 � Creating a TCP client 321

13.3 Tools for interacting with the operating system 323
The process global singleton 324 � Using the filesystem

module 327 � Spawning external processes 331

CONTENTS xi

13.4 Developing command-line tools 336
Parsing command-line arguments 336 � Working with stdin and
stdout 337 � Adding colored output 339

13.5 Summary 342

14 The Node ecosystem 343
14.1 Online resources for Node developers 344

Node and module references 344 � Google Groups 345
IRC 346 � GitHub issues 346

14.2 GitHub 347
Getting started on GitHub 348 � Adding a project to
GitHub 349 � Collaborating using GitHub 352

14.3 Contributing to the npm repository 354
Preparing a package 355 � Writing a package specification 355
Testing and publishing a package 356

14.4 Summary 358

appendix A Installing Node and community add-ons 359
appendix B Debugging Node 367
appendix C Extending and configuring Express 374

index 379

foreword
Writing a book about Node.js is a challenging endeavor. It’s a relatively new platform,
just now attaining stability. The Node.js core continues to evolve, and the community
of user-created modules is exploding at a pace that no one can hope to keep track of.
The community is still finding its voice. The only way to catch such a moving target in
print is to get at the essence of what Node is, and why it has been succeeding as it has.
These Node.js veterans have done just that. Mike Cantelon is extremely active in the
Node community, experimenting with and speaking about Node. He has an excellent
grasp on what Node is good for, and perhaps more importantly, what it isn’t good for.
T.J. Holowaychuk is one of the most prolific authors of Node.js modules, including
the massively popular Express web framework. Nathan Rajlich, better known to many
as TooTallNate, has been a Node.js core committer for some time now and is an active
part of the development of the platform as it has matured into its current state.

 This book draws on their considerable experience, taking you from the very first
steps of installing Node.js on your computer all the way to creating, debugging, and
deploying production applications. You’ll learn what makes Node interesting and get
a glimpse into the authors’ combined understanding, so that the future directions the
Node project takes will make sense. Most importantly, the content ramps up nicely
from basic to advanced, building on prior learning at each stage.

 Node is an ascending rocket, and the authors have done a great job of bringing
you along for the ride. Think of Node.js in Action as the launching pad from which to
explore your own horizons.

ISAAC Z. SCHLUETER

NPM AUTHOR
xiii

NODE.JS PROJECT LEAD

preface
In early 2011, when Manning approached us with the idea of writing a book on
Node.js, the state of the Node community was much different than it is now. The com-
munity was small and, despite the fact that Node was starting to attract a great deal of
interest, Node was still considered a bleeding-edge technology by the mainstream
development community. No books had yet been written about it, and although the
idea of writing a book was daunting, we decided to go for it.

 Given our respective development inclinations, we wanted to create a book that
not only focused on the use of Node for web application development, but also
explored other interesting potential uses. We wanted to provide a way for web applica-
tion developers using conventional technologies to harness Node’s vision of bringing
asynchronous development to the server.

 We’ve worked for more than two years on the book, and during its writing the tech-
nology has evolved, so we’ve updated the book accordingly. In addition to the technol-
ogy changing, the community has also evolved. It is now much larger, and many
established companies have embraced Node.

 For web application developers looking to try something different, this is a great
time to learn Node, and we hope our book helps you learn the technology quickly and
have fun doing so.
xv

acknowledgments
Thanks are due to the great people at Manning for their role in the creation of this
book. Renae Gregoire played a major role, pushing us toward eloquence, clarity, and
quality. Bert Bates helped define the book’s visual feel, working with us to design
graphics expressing various concepts presented in the book. Marjan Bace and Michael
Stephens believed in us enough to entrust us with the creation of the book and
helped keep the project moving. And Manning’s editorial, production, and technical
staff were amazing to work with.

 Many people reviewed the manuscript in various stages of its development, and we
would like to thank them for their feedback. This includes our MEAP readers who
posted comments and corrections in the book’s online forum, and the following
reviewers who read the manuscript multiple times and whose insights and comments
helped make this a much better book: Àlex Madurell, Bert Thomas, Bradley Meck,
Braj Panda, Brian L. Cooley, Brian Del Vecchio, Brian Dillard, Brian Ehmann, Brian
Falk, Daniel Bretoi, Gary Ewan Park, Jeremy Martin, Jeroen Nouws, Jeroen Trappers,
Kassandra Perch, Kevin Baister, Michael Piscatello, Patrick Steger, Paul Stack, and
Scott Banachowski.

 Thanks also to Valentin Crettaz and Michael Levin for their careful technical
proofread of the final manuscript, shortly before it went into production. Last but not
least, we’d like to thank Isaac Schlueter, Node Project Lead, for contributing the fore-
word to our book.

MIKE CANTELON
I’d like to thank my friend Joshua Paul for giving me my first break in the tech indus-
xvi

try, introducing me to the world of open source, and encouraging me to write a book.

ACKNOWLEDGMENTS xvii

I’d also like to thank my partner Malcolm for encouraging me during the book’s cre-
ation and for her patience during the times when writing kept me constantly cooped
up at home. A big thanks, as well, to my parents for bringing me up with a passion for
creativity and exploration, and for putting up with my less-than-balanced childhood
obsession with 8-bit machines. I’d also like to thank my grandparents for gifting me
with the machine that got me hooked, for life, on programming: the Commodore 64.

 During the process of writing the book, T.J. and Nathan’s expertise was invaluable
and their good humor much appreciated. I thank them for taking a leap of faith and
agreeing to collaborate. Marc Harter was also a huge help, chipping in on the Hercu-
lean task of editing, proofing, and writing content that tied everything together.

MARC HARTER
Thanks to Ryan Dahl, who inspired me to take a serious look at server-side JavaScript
programming nearly four years ago. Thanks to Ben Noordhuis, an invaluable
resource on the inner workings of Node. Thanks to Bert Bates, who believed in me,
challenged me, and was always willing to help during the writing process. Thanks to
Mike, Nate, and T.J. for welcoming me in at the 11th hour. It was an honor working
with them. Thanks especially to my wife and friend Hannah, whose courage and kind-
ness carried me into and through this new venture.

NATHAN RAJLICH
I would like to start by thanking Guillermo Rauch for taking me in and helping me
find my place in the Node.js community. I would also like to thank David Blickstein
for encouraging me to take on this book project. I thank Ryan Dahl for starting the
Node.js movement, and Isaac Schlueter for doing an excellent job of stewarding this
ship for the last couple for years. Thanks also to my family, my friends, and my girl-
friend for putting up with the sleepless nights and wide range of emotions exhibited
during the process. And of course a huge thanks to my parents for supporting me
throughout the years in my computing endeavors. I wouldn’t be where I am today
without them at my side.

about this book
Node.js in Action’s primary purpose is to teach you to how to create and deploy Node
applications, with a focus on web applications. A considerable part of the book focuses
on the Express web application framework and the Connect middleware framework
because of their usefulness and community support. You’ll also learn how to create
automated tests for, and how to deploy, your applications.

 This book is targeted toward experienced web application developers who are
interested in creating responsive, scalable applications using Node.js.

 Because Node.js applications are written using JavaScript, a working knowledge of
the language is a prerequisite. Familiarity with the Windows, OS X, or Linux command
line is also recommended.

Roadmap
This book is organized into three parts.

 Part 1 provides an introduction to Node.js, teaching the fundamental techniques
needed to develop with it. Chapter 1 explains the characteristics of Node and steps
through some example code. Chapter 2 guides the reader through the creation of an
example application. Chapter 3 explains the challenges of Node.js development, pro-
vides techniques for overcoming them, and teaches ways to organize application code.

 Part 2 is the largest in the book and focuses on web application development.
Chapter 4 teaches the basics of creating Node-driven web applications, and chapter 5
talks about how to store application data using Node.

 Part 2 then continues into the world of web-related frameworks. Chapter 6 intro-
duces the Connect framework, explaining its benefits and how it works. Chapter 7
xviii

teaches how various built-in Connect framework components can be used to add

ABOUT THIS BOOK xix

functionality to web applications. Chapters 8 provides an introduction to the Express
framework, and chapter 9 guides the reader through advanced Express usage.

 With the basics of web development covered, part 2 concludes after exploring two
more related topics. Chapter 10 guides the reader through the use of various Node
testing frameworks. Chapter 11 then teaches how templating can be used in Node
web applications to separate presentation of data from logic.

 Part 3 moves on to look at things beyond web development that can be done with
Node. Chapter 12 talks about how Node applications can be deployed to production
servers, how uptime can be maintained, and how performance can be maximized.
Chapter 13 explains how non-HTTP applications can be created, how to use the
Socket.io framework to create real-time applications, and the use of a number of handy
build-in Node APIs. Chapter 14, the final chapter, discusses how the Node community
works and how Node creations can be published using the Node Package Manager.

Code conventions and downloads
The code in this book follows common JavaScript conventions. Spaces, rather than
tabs, are used for indentation. Lines longer than 80 characters are avoided. In many
listings, the code is annotated to point out key concepts.

 A single statement per line is used and semicolons are added at the end of simple
statements. For blocks of code, where one or more statements are enclosed in curly
braces, the left curly brace is placed at the end of the opening line of the block. The
right curly brace is indented so it’s vertically aligned with the opening line of the
block.

 Source code for the examples in this book is available for download from the pub-
lisher’s website at www.manning.com/Node.jsinAction.

Author Online
Purchase of Node.js in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/Node.jsinAction.
This page provides information on how to get on the forum once you’re registered,
what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

www.manning.com/Node.jsinAction
www.manning.com/Node.jsinAction
http://www.manning.com/makingJavaGroovy
http://www.manning.com/makingJavaGroovy
http://www.manning.com/makingJavaGroovy

about the cover illustration
The figure on the cover of Node.js in Action is captioned “Man about Town.” The illus-
tration is taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume
compendium of regional dress customs published in France. Each illustration is finely
drawn and colored by hand. The rich variety of Maréchal’s collection reminds us viv-
idly of how culturally apart the world’s towns and regions were just 200 years ago. Iso-
lated from each other, people spoke different dialects and languages. Whether on city
streets, in small towns, or in the countryside, it was easy to identify where they lived
and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region and class, so rich
at the time, has faded away. It is now hard to tell apart the inhabitants of different con-
tinents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xx

Part 1

Node fundamentals

When learning a programming language or framework, you’ll often
encounter new concepts that require you to think about things in a new way.
Node is no exception, as it takes a new approach to a number of aspects of appli-
cation development.

 The first part of this book will outline exactly how Node is different from
other platforms and will teach the basics of its use. You’ll learn what applications
created in Node look like, how they’re organized, and how to deal with develop-
ment challenges specific to Node. What you learn in part 1 will give you the
foundation needed to learn how to create web applications in Node, detailed in
part 2, and how to create nonweb applications, discussed in part 3.

http://groups.google.com/group/nodejs
http://webchat.freenode.net/?channels=node.js
http://webchat.freenode.net/?channels=node.js
http://npmjs.org
https://github.com/joyent/node
http://jsconf.eu/2009/video_nodejs_by_ryan_dahl.html
http://jsconf.eu/2009/video_nodejs_by_ryan_dahl.html

http://www.nodejs.org
www.youtube.com/watch?v=Trurfqh_6fQ
www.chromeexperiments.com/
http://bellard.org/jslinux/

https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
http://en.wikipedia.org/wiki/Event_loop
http://en.wikipedia.org/wiki/Event_loop
http://en.wikipedia.org/wiki/Asynchronous_I/O
http://en.wikipedia.org/wiki/ECMAScript

6 CHAPTER 1 Welcome to Node.js

In this example, the assumption is that the response for resource.json would be stored
in the data variable when it is ready and that the console.log function will not execute
until then. The I/O operation (the Ajax request) would “block” script execution from
continuing until ready. Because the browser is single-threaded, if this request took 400
ms to return, any other events happening on that page would wait until then before
execution. You can imagine the poor user experience if an animation was paused or
the user was trying to interact with the page somehow.

 Thankfully, that’s not the case. When I/O happens in the browser, it happens out-
side of the event loop (outside the main script execution) and then an “event” is emit-
ted when the I/O is finished,6 which is handled by a function (often called the
“callback”) as shown in figure 1.1.

 The I/O happens asynchronously and doesn’t “block” the script execution, allow-
ing the event loop to respond to whatever other interactions or requests are being
performed on the page. This enables the browser to be responsive to the client and to
handle a lot of interactivity on the page.

 Make a note of that, and let’s switch over to the server.

6 Note that there are a few exceptions that “block” execution in the browser, and their use is typically discour-

$.post('/resource.json', function (data) {
 console.log(data);
})

Event loop
1. Ajax request made
 for resource.json.

resource.json

2. User clicks; onclick event handled.

...waiting...

4. Finally, Ajax response for
resource.json comes back
and is handled in the callback.

3. Another Ajax response
 comes back.

Figure 1.1 An example of non-blocking I/O in the browser
aged: alert, prompt, confirm, and synchronous XHR.

http://mng.bz/eaZT
http://mng.bz/eaZT
http://nginx.com/
www.kegel.com/c10k.html
www.kegel.com/c10k.html
http://nodejs.org/about/

8 CHAPTER 1 Welcome to Node.js

This mix of event-driven and asynchronous models and the widely accessible
JavaScript language helps open up an exciting world of data-intensive real-time
applications.

1.4 DIRTy applications
There actually is an acronym for the types of applications Node is designed for: DIRT.
It stands for data-intensive real-time applications. Because Node itself is very lightweight
on I/O, it’s good at shuffling or proxying data from one pipe to another. It allows a
server to hold a number of connections open while handling many requests and keep-
ing a small memory footprint. It’s designed to be responsive, like the browser.

 Real-time applications are a new use case of the web. Many web applications now
provide information virtually instantly, implementing things like online whiteboard
collaboration, real-time pinpointing of approaching public transit buses, and multi-
player games. Whether it’s existing applications being enhanced with real-time com-
ponents or completely new types of applications, the web is moving toward more
responsive and collaborative environments. These new types of web applications,
however, call for a platform that can respond almost instantly to a large number of
concurrent users. Node is good at this, and not just for web applications, but also for
other I/O-heavy applications.

 A good example of a DIRTy application written with Node is Browserling (brow-
serling.com, shown in figure 1.3). The site allows in-browser use of other browsers.
This is extremely useful to front-end web developers because it frees them from hav-

Figure 1.2 WebFaction
Apache/NGINX benchmark
ing to install numerous browsers and operating systems solely for testing. Browserling

9DIRTy applications

leverages a Node-driven project called StackVM, which manages virtual machines
(VMs) created using the QEMU (Quick Emulator) emulator. QEMU emulates the CPU
and peripherals needed to run the browser.

 Browserling has VMs run test browsers and then relays the keyboard and mouse
input data from the user’s browser to the emulated browser which, in turn, streams
the repainted regions of the emulated browser and redraws them on the canvas of the
user’s browser. This is illustrated in figure 1.4.

Figure 1.3 Browserling: interactive cross-browser testing using Node.js

Browserling.com
Emulated
browser
(QEMU)

Node.jsWebSocket
HTML5 canvas

User’s mouse and keyboard events

Updated images in the form of data URls

1 In the browser, the user's mouse and keyboard events are passed over
WebSocket in real time to Node.js, which in turn passes them to the emulator.

2 The repainted regions of the emulated browser affected by the user interaction
are streamed back though Node and WebSocket and drawn on the canvas in the browser.

1

1

2

2

Figure 1.4 Browserling workflow

11DIRTy by default

1.5.1 Simple async example
In section 1.2, we looked at this Ajax example using jQuery:

$.post('/resource.json', function (data) {
console.log(data);

});

Let’s do something similar in Node, but instead we’ll use the filesystem (fs) module
to load resource.json from disk. Notice how similar the program is to the previous
jQuery example:

var fs = require('fs');
fs.readFile('./resource.json', function (er, data) {

console.log(data);
})

In this program, we read the resource.json file from disk. When all the data is read, an
anonymous function is called (a.k.a. the “callback”) containing the arguments er, if
any error occurred, and data, which is the file data.

 The process loops behind the scenes, able to handle any other operations that may
come its way until the data is ready. All the evented and async benefits we talked about
earlier are in play automatically. The difference here is that instead of making an Ajax
request from the browser using jQuery, we’re accessing the filesystem in Node to grab
resource.json. This latter action is illustrated in figure 1.5.

Event loop

1. File request made
 for resource.json.

resource.json

2. An event is triggered.

...waiting...

4. Finally, file data for
resource.json comes
back and is handled
in the callback.

3. Another I/O operation finishes.

var fs = require('fs');
fs.readFile('./resource.json', function (err, data) {
 console.log(data);
});
Figure 1.5 An example of non-blocking I/O in Node

12 CHAPTER 1 Welcome to Node.js

1.5.2 Hello World HTTP server
A very common use case for Node is building servers. Node makes it very simple to
create different types of servers. This can feel odd if you’re used to having a server
host your application (such as a PHP application hosted on an Apache HTTP server).
In Node, the server and the application are the same.

 Here’s an example of an HTTP server that simply responds to any request with
“Hello World”:

var http = require('http');
http.createServer(function (req, res) {

res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

}).listen(3000);
console.log('Server running at http://localhost:3000/');

Whenever a request happens, the function (req, res) callback is fired and “Hello
World” is written out as the response. This event model is akin to listening to an
onclick event in the browser. A click could happen at any point, so you set up a func-
tion to perform some logic to handle that. Here, Node provides a function that
responds whenever a request happens.

 Here’s another way to write this same server to make the request event even more
explicit:

var http = require('http');
var server = http.createServer();
server.on('request', function (req, res) {

res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

})
server.listen(3000);
console.log('Server running at http://localhost:3000/');

1.5.3 Streaming data
Node is also huge on streams and streaming. You can think of streams as being like
arrays, but instead of having data distributed over space, streams can be thought of as
data distributed over time. By bringing data in chunk by chunk, the developer is given
the ability to handle that data as it comes in instead of waiting for it all to arrive before
acting. Here’s how you would stream resource.json:

var stream = fs.createReadStream('./resource.json')
stream.on('data', function (chunk) {

console.log(chunk)
})
stream.on('end', function () {

console.log('finished')
})

A data event is fired whenever a new chunk of data is ready, and an end event is fired
when all the chunks have been loaded. A chunk can vary in size, depending on the

Setting up an
event listener
for request

Data event fires
when a new chunk
is ready

15Application overview

Let’s start with an application overview—you’ll see what the application will look like
and how it’ll behave when it’s completed.

2.1 Application overview
The application you’ll build in this chapter allows users to chat online with each other
by entering messages into a simple form, as shown in figure 2.1. A message, once
entered, is sent to all other users in the same chat room.

 When starting the application, a user is automatically assigned a guest name, but
they can change it by entering a command, as shown in figure 2.2. Chat commands
are prefaced with a slash (/).

Figure 2.1 Entering a message into the chat application
Figure 2.2 Changing one’s chat name

16 CHAPTER 2 Building a multiroom chat application

Similarly, a user can enter a command to create a new chat room (or join it if it already
exists), as shown in figure 2.3. When joining or creating a room, the new room name
will be shown in the horizontal bar at the top of the chat application. The room will
also be included in the list of available rooms to the right of the chat message area.

 After the user changes to a new room, the system will confirm the change, as
shown in figure 2.4.

 While the functionality of this application is deliberately bare-bones, it showcases
important components and fundamental techniques needed to create a real-time web

Figure 2.3 Changing rooms

Figure 2.4 The results of
changing to a new room

18 CHAPTER 2 Building a multiroom chat application

Node can easily handle simultaneously serving HTTP and WebSocket using a single
TCP/IP port, as figure 2.5 depicts. Node comes with a module that provides HTTP
serving functionality. There are a number of third-party Node modules, such as
Express, that build upon Node’s built-in functionality to make web serving even easier.
We’ll go into depth about how to use Express to build web applications in chapter 8.
In this chapter’s application, however, we’ll stick to the basics.

 Now that you have a rough idea of the core technologies the application will use,
let’s start fleshing it out.

2.2.2 Creating the application file structure
To start constructing the tutorial application, create a project directory for it. The
main application file will go directly in this directory. You’ll need to add a lib subdi-
rectory, within which some server-side logic will be placed. You’ll need to create a pub-
lic subdirectory where client-side files will be
placed. Within the public subdirectory, cre-
ate a javascripts subdirectory and a stylesheets
directory.

 Your directory structure should now look
like figure 2.6. Note that while we’ve chosen
to organize the files in this particular way in
this chapter, Node doesn’t require you to
maintain any particular directory structure;
application files can be organized in any way
that makes sense to you.

Occurs only when user arrives
at the chat application website

Occurs repeatedly while user chats

Web browser

Node server

HTTP
request

HTTP
request

Web browser

Node server

WebSocket
data sent

WebSocket
data received

Figure 2.5 Handling HTTP and WebSocket within a single application

Need to install Node?
If you haven’t already installed Node, please head to appendix A now for instructions
for doing so.

Figure 2.6 The skeletal project directory
for the chat application

19Application requirements and initial setup

Now that you’ve established a directory structure, you’ll want to specify the applica-
tion’s dependencies.

 An application dependency, in this context, is a module that needs to be installed to
provide functionality needed by the application. Let’s say, for example, that you were
creating an application that needed to access data stored using a MySQL database.
Node doesn’t come with a built-in module that allows access to MySQL, so you’d have
to install a third-party module, and this would be considered a dependency.

2.2.3 Specifying dependencies
Although you can create Node applications without formally specifying dependencies,
it’s a good habit to take the time to specify them. That way, if you want others to use
your application, or you plan on running it in more than one place, it becomes more
straightforward to set up.

 Application dependencies are specified using a package.json file. This file is always
placed in an application’s root directory. A package.json file consists of a JSON expres-
sion that follows the CommonJS package descriptor standard (http://wiki.commonjs
.org/wiki/Packages/1.0) and describes your application. In a package.json file you can
specify many things, but the most important are the name of your application, the ver-
sion, a description of what the application does, and the application’s dependencies.

 Listing 2.1 shows a package descriptor file that describes the functionality and
dependencies of the tutorial application. Save this file as package.json in the root
directory of the tutorial application.

{
"name": "chatrooms",
"version": "0.0.1",
"description": "Minimalist multiroom chat server",
"dependencies": {

"socket.io": "~0.9.6",
"mime": "~1.2.7"

}
}

If the content of this file seems a bit confusing, don’t worry...you’ll learn more about
package.json files in the next chapter and, in depth, in chapter 14.

2.2.4 Installing dependencies
With a package.json file defined, installing your application’s dependencies becomes
trivial. The Node Package Manager (npm; https://github.com/isaacs/npm) is a util-
ity that comes bundled with Node. It offers a great deal of functionality, allowing you
to easily install third-party Node modules and globally publish any Node modules you
yourself create. Another thing it can do is read dependencies from package.json files
and install each of them with a single command.

Listing 2.1 A package descriptor file

Name of package

Package dependencies

21Serving the application’s HTML, CSS, and client-side JavaScript

SENDING FILE DATA AND ERROR RESPONSES

Next you need to add three helper functions used for serving static HTTP files. The
first will handle the sending of 404 errors when a file is requested that doesn’t exist.
Add the following helper function to server.js:

function send404(response) {
response.writeHead(404, {'Content-Type': 'text/plain'});
response.write('Error 404: resource not found.');
response.end();

}

The second helper function serves file data. The function first writes the appropriate
HTTP headers and then sends the contents of the file. Add the following code to
server.js:

function sendFile(response, filePath, fileContents) {
response.writeHead(

200,
{"content-type": mime.lookup(path.basename(filePath))}

);
response.end(fileContents);

}

index.html

chat_server.js

Server side
(Node.js)

Client side
(web browser)

server.js

style.css

chat.js

javascripts

stylesheets

public

lib

chat_ui.js
Figure 2.8 In this chat
application, there’s both
client-side and server-
side JavaScript logic.

22 CHAPTER 2 Building a multiroom chat application

Accessing memory storage (RAM) is faster than accessing the filesystem. Because of
this, it’s common for Node applications to cache frequently used data in memory. Our
chat application will cache static files to memory, only reading them from disk the first
time they’re accessed. The next helper determines whether or not a file is cached and,
if so, serves it. If a file isn’t cached, it’s read from disk and served. If the file doesn’t
exist, an HTTP 404 error is returned as a response. Add this helper function to
server.js.

function serveStatic(response, cache, absPath) {
if (cache[absPath]) {

sendFile(response, absPath, cache[absPath]);
} else {

fs.exists(absPath, function(exists) {
if (exists) {

fs.readFile(absPath, function(err, data) {
if (err) {

send404(response);
} else {

cache[absPath] = data;
sendFile(response, absPath, data);

}
});

} else {
send404(response);

}
});

}
}

CREATING THE HTTP SERVER

For the HTTP server, an anonymous function is provided as an argument to create-
Server, acting as a callback that defines how each HTTP request should be handled.
The callback function accepts two arguments: request and response. When the call-
back executes, the HTTP server will populate these arguments with objects that,
respectively, allow you to work out the details of the request and send back a response.
You’ll learn about Node’s http module in detail in chapter 4.

 Add the logic in the following listing to server.js to create the HTTP server.

var server = http.createServer(function(request, response) {
var filePath = false;

if (request.url == '/') {
filePath = 'public/index.html';

} else {
filePath = 'public' + request.url;

}

Listing 2.3 Serving static files

Listing 2.4 Logic to create an HTTP server

Check if file is
cached in memory

Serve file from memory

Check if file exists

Read file from disk

Serve file read
from disk

Send HTTP 404
response

Create HTTP
server, using
anonymous
function to
define
per-request
behavior

Determine HTML file to
be served by default

Translate URL path
to relative file path

23Serving the application’s HTML, CSS, and client-side JavaScript

var absPath = './' + filePath;
serveStatic(response, cache, absPath);

});

STARTING THE HTTP SERVER

You’ve created the HTTP server in the code, but you haven’t added the logic needed
to start it. Add the following lines, which start the server, requesting that it listen on
TCP/IP port 3000. Port 3000 is an arbitrary choice; any unused port above 1024 would
work (a port under 1024 might also work if you’re running Windows or, if in Linux or
OS X, you start your application using a privileged user such as “root”).

server.listen(3000, function() {
console.log("Server listening on port 3000.");

});

If you’d like to see what the application can do at this point, you can start the server by
entering the following into your command-line prompt:

node server.js

With the server running, visiting http://127.0.0.1:3000 in your web browser will result
in the triggering of the 404 error helper, and the “Error 404: resource not found”
message will be displayed. Although you’ve added the static file–handling logic, you
haven’t added the static files themselves. A point to remember is that a running server
can be stopped by using Ctrl-C on the command line.

 Next, let’s move on to adding the static files necessary to get the chat application
more functional.

2.3.2 Adding the HTML and CSS files
The first static file you’ll add is the base HTML. Create a file in the public directory
named index.html and place the HTML in listing 2.5 in it. The HTML will include a
CSS file, set up some HTML div elements in which application content will be dis-
played, and load a number of client-side JavaScript files. The JavaScript files provide
client-side Socket.IO functionality, jQuery (for easy DOM manipulation), and a couple
of application-specific files providing chat functionality.

<!doctype html>
<html lang='en'>

<head>
<title>Chat</title>
<link rel='stylesheet' href='/stylesheets/style.css'></link>

</head>

<body>
<div id='content'>

<div id='room'></div>

Listing 2.5 The HTML for the chat application

Serve static file

div in which the
current room name
will be displayed

24 CHAPTER 2 Building a multiroom chat application

<div id='room-list'></div>
<div id='messages'></div>

<form id='send-form'>
<input id='send-message' />
<input id='send-button' type='submit' value='Send'/>

<div id='help'>
Chat commands:

Change nickname: <code>/nick [username]</code>
Join/create room: <code>/join [room name]</code>

</div>

</form>
</div>

<script src='/socket.io/socket.io.js' type='text/javascript'></script>
<script src='http://code.jquery.com/jquery-1.8.0.min.js'
 �type='text/javascript'></script>
<script src='/javascripts/chat.js' type='text/javascript'></script>
<script src='/javascripts/chat_ui.js' type='text/javascript'></script>
</body>
</html>

The next file you need to add defines the application’s CSS styling. In the public/
stylesheets directory, create a file named style.css and put the following CSS code in it.

body {
padding: 50px;
font: 14px "Lucida Grande", Helvetica, Arial, sans-serif;

}

a {
color: #00B7FF;

}

#content {
width: 800px;
margin-left: auto;
margin-right: auto;

}

#room {
background-color: #ddd;
margin-bottom: 1em;

}

#messages {
width: 690px;
height: 300px;
overflow: auto;
background-color: #eee;
margin-bottom: 1em;
margin-right: 10px;

}

Listing 2.6 Application CSS

div in which
a list of

available
rooms will

be displayed

div in which chat messages
will be displayed

Form input element
in which user will
enter commands
and messages

Application will be
800 pixels wide and
horizontally centered

CSS rules for area in
which current room
name is displayed

Message display area
will be 690 pixels wide
and 300 pixels high

Allows div in which messages
are displayed to scroll when
it’s filled up with content

28 CHAPTER 2 Building a multiroom chat application

ASSIGNING GUEST NAMES

The first helper function you need to add is assignGuestName, which handles the
naming of new users. When a user first connects to the chat server, the user is placed
in a chat room named Lobby, and assignGuestName is called to assign them a name to
distinguish them from other users.

 Each guest name is essentially the word Guest followed by a number that incre-
ments each time a new user connects. The guest name is stored in the nickNames vari-
able for reference, associated with the internal socket ID. The guest name is also
added to namesUsed, a variable in which names that are being used are stored. Add
the code in the following listing to lib/chat_server.js to implement this functionality.

function assignGuestName(socket, guestNumber, nickNames, namesUsed) {
var name = 'Guest' + guestNumber;
nickNames[socket.id] = name;
socket.emit('nameResult', {

success: true,
name: name

});
namesUsed.push(name);
return guestNumber + 1;

}

JOINING ROOMS

The second helper function you’ll need to add to chat_server.js is joinRoom. This
function, shown in listing 2.9, handles logic related to a user joining a chat room.

 Having a user join a Socket.IO room is simple, requiring only a call to the join
method of a socket object. The application then communicates related details to the
user and other users in the same room. The application lets the user know what other
users are in the room and lets these other users know that the user is now present.

function joinRoom(socket, room) {
socket.join(room);
currentRoom[socket.id] = room;
socket.emit('joinResult', {room: room});
socket.broadcast.to(room).emit('message', {

text: nickNames[socket.id] + ' has joined ' + room + '.'
});

var usersInRoom = io.sockets.clients(room);
if (usersInRoom.length > 1) {

var usersInRoomSummary = 'Users currently in ' + room + ': ';
for (var index in usersInRoom) {

var userSocketId = usersInRoom[index].id;
if (userSocketId != socket.id) {

if (index > 0) {
usersInRoomSummary += ', ';

}

Listing 2.8 Assigning a guest name

Listing 2.9 Logic related to joining a room

Generate new
guest nameAssociate

guest name
with client

connection ID

Let user know
their guest name

Note that guest
name is now used

Increment counter used
to generate guest names

Make user join room
Note that

user is now
in this room

Let user know
they’re now in
new room

Let other users
in room know
that user has

joined

Determine what
other users are in

same room as user

If other
users exist,
summarize

who they are

29Handling chat-related messaging using Socket.IO

usersInRoomSummary += nickNames[userSocketId];
}

}
usersInRoomSummary += '.';
socket.emit('message', {text: usersInRoomSummary});

}
}

HANDLING NAME-CHANGE REQUESTS

If every user just kept their guest name, it would be hard to remember who’s who.
For this reason, the chat application allows the user to request a name change. As fig-
ure 2.10 shows, a name change involves the user’s web browser making a request via
Socket.IO and then receiving a response indicating success or failure.

Add the code in the following listing to lib/chat_server.js to define a function that
handles requests by users to change their names. From the application’s perspective,
the users aren’t allowed to change their names to anything beginning with Guest or to
use a name that’s already in use.

function handleNameChangeAttempts(socket, nickNames, namesUsed) {
socket.on('nameAttempt', function(name) {

if (name.indexOf('Guest') == 0) {
socket.emit('nameResult', {

success: false,
message: 'Names cannot begin with "Guest".'

});
} else {

if (namesUsed.indexOf(name) == -1) {
var previousName = nickNames[socket.id];
var previousNameIndex = namesUsed.indexOf(previousName);
namesUsed.push(name);
nickNames[socket.id] = name;
delete namesUsed[previousNameIndex];

Listing 2.10 Logic to handle name-request attempts

Send summary of
other users in the
room to the user

nameAttempt event sent by
client with string data "Bob Dobbs"

{
 success: true,
 name: name
}

nameResult event returned by server
with JSON data:

Web browser

Web browser

Node server

Node server

Figure 2.10 A name-change request and response

Add listener for
nameAttempt
events

Don’t allow
nicknames

to begin
with Guest

If name isn’t
already registered,
register it

Remove previous name to make
available to other clients

30 CHAPTER 2 Building a multiroom chat application

socket.emit('nameResult', {
success: true,
name: name

});
socket.broadcast.to(currentRoom[socket.id]).emit('message', {

text: previousName + ' is now known as ' + name + '.'
});

} else {
socket.emit('nameResult', {

success: false,
message: 'That name is already in use.'

});
}

}
});

}

SENDING CHAT MESSAGES

Now that user nicknames are taken care of, you need to add a function that defines
how a chat message sent from a user is handled. Figure 2.11 shows the basic process:
the user emits an event indicating the room where the message is to be sent and the
message text. The server then relays the message to all other users in the same room.

 Add the following code to lib/chat_server.js. Socket.IO’s broadcast function is
used to relay the message:

function handleMessageBroadcasting(socket) {
socket.on('message', function (message) {

socket.broadcast.to(message.room).emit('message', {
text: nickNames[socket.id] + ': ' + message.text

});
});

}

Send error to client
if name is already
registered

message event sent by
client with JSON data:

{
text: "Bob Dobbs: Hi all!"

}

{
 room: "Lobby",

text: "Hi all!"
}

message event sent by server
with JSON data:

Web browser A

Web browser B

Web browser C

Web browser D

Node server

Node server

Figure 2.11 Sending a chat message

31Using client-side JavaScript for the application’s user interface

CREATING ROOMS

Next, you need to add functionality that allows a user to join an existing room or, if it
doesn’t yet exist, to create it. Figure 2.12 shows the interaction between the user and
the server.

 Add the following code to lib/chat_server.js to enable room changing. Note the
use of Socket.IO’s leave method:

function handleRoomJoining(socket) {
socket.on('join', function(room) {

socket.leave(currentRoom[socket.id]);
joinRoom(socket, room.newRoom);

});
}

HANDLING USER DISCONNECTIONS

Finally, you need to add the following logic to lib/chat_server.js to remove a user’s
nickname from nickNames and namesUsed when the user leaves the chat application:

function handleClientDisconnection(socket) {
socket.on('disconnect', function() {

var nameIndex = namesUsed.indexOf(nickNames[socket.id]);
delete namesUsed[nameIndex];
delete nickNames[socket.id];

});
}

With the server-side components fully defined, you’re now ready to further develop
the client-side logic.

2.5 Using client-side JavaScript
for the application’s user interface
Now that you’ve added server-side Socket.IO logic to dispatch messages sent from the
browser, it’s time to add the client-side JavaScript needed to communicate with the
server. Client-side JavaScript is needed to handle the following functionality:

join event sent by client with
JSON data

{
room: "Bob's Room"

}

joinResult event sent by
server with JSON data:

Web browser

Web browser

Node server

Node server

{
"newroom": "Bob's Room"

}

Figure 2.12 Changing to a different chat room

33Using client-side JavaScript for the application’s user interface

case 'nick':
words.shift();
var name = words.join(' ');
this.socket.emit('nameAttempt', name);
break;

default:
message = 'Unrecognized command.';
break;

}

return message;
};

2.5.2 Showing messages and available rooms in the user interface
Now it's time to start adding logic that interacts directly with the browser-based user
interface using jQuery. The first functionality you’ll add will be to display text data.

 In web applications there are, from a security perspective, two types of text data.
There’s trusted text data, which consists of text supplied by the application, and there’s
untrusted text data, which is text created by or derived from text created by users of the
application. Text data from users is considered untrusted because malicious users may
intentionally submit text data that includes JavaScript logic in <script> tags. This text
data, if displayed unaltered to other users, could cause nasty things to happen, such as
redirecting users to another web page. This method of hijacking a web application is
called a cross-site scripting (XSS) attack.

 The chat application will use two helper functions to display text data. One func-
tion will display untrusted text data, and the other function will display trusted text
data.

 The function divEscapedContentElement will display untrusted text. It will sanitize
text by transforming special characters into HTML entities, as shown in figure 2.13, so
the browser knows to display them as entered rather than attempting to interpret them
as part of an HTML tag.

 The function divSystemContentElement will display trusted content created by
the system rather than by other users.

Handle name-
change attempts

Return error
message if
command isn’t
recognized

Message is sanitized by
divEscapedContentElement
and placed in <div> element

<script>alert('XSS attack!');</script>

<div>&It;script>alert('XSS attack!');&Lt:/script><div> Figure 2.13 Escaping
untrusted content

34 CHAPTER 2 Building a multiroom chat application

In the public/javascripts directory, add a file named chat_ui.js and put the following
two helper functions in it:

function divEscapedContentElement(message) {
return $('<div></div>').text(message);

}

function divSystemContentElement(message) {
return $('<div></div>').html('<i>' + message + '</i>');

}

The next function you’ll append to chat_ui.js is for processing user input; it’s detailed
in the following listing. If user input begins with the slash (/) character, it’s treated as
a chat command. If not, it’s sent to the server as a chat message to be broadcast to
other users, and it’s added to the chat room text of the room the user’s currently in.

function processUserInput(chatApp, socket) {
var message = $('#send-message').val();
var systemMessage;

if (message.charAt(0) == '/') {
systemMessage = chatApp.processCommand(message);
if (systemMessage) {

$('#messages').append(divSystemContentElement(systemMessage));
}

} else {
chatApp.sendMessage($('#room').text(), message);
$('#messages').append(divEscapedContentElement(message));
$('#messages').scrollTop($('#messages').prop('scrollHeight'));

}

$('#send-message').val('');
}

Now that you’ve got some helper functions defined, you need to add the logic in the
following listing, which is meant to execute when the web page has fully loaded in the
user’s browser. This code handles client-side initiation of Socket.IO event handling.

var socket = io.connect();

$(document).ready(function() {
var chatApp = new Chat(socket);

socket.on('nameResult', function(result) {
var message;

if (result.success) {
message = 'You are now known as ' + result.name + '.';

} else {
message = result.message;

}
$('#messages').append(divSystemContentElement(message));

});

Listing 2.12 Processing raw user input

Listing 2.13 Client-side application initialization logic

If user input begins
with slash, treat it
as command

Broadcast noncommand
input to other users

Display results of a
name-change attempt

35Using client-side JavaScript for the application’s user interface

socket.on('joinResult', function(result) {
$('#room').text(result.room);
$('#messages').append(divSystemContentElement('Room changed.'));

});

socket.on('message', function (message) {
var newElement = $('<div></div>').text(message.text);
$('#messages').append(newElement);

});

socket.on('rooms', function(rooms) {
$('#room-list').empty();

for(var room in rooms) {
room = room.substring(1, room.length);
if (room != '') {

$('#room-list').append(divEscapedContentElement(room));
}

}

$('#room-list div').click(function() {
chatApp.processCommand('/join ' + $(this).text());
$('#send-message').focus();

});
});

setInterval(function() {
socket.emit('rooms');

}, 1000);

$('#send-message').focus();

$('#send-form').submit(function() {
processUserInput(chatApp, socket);
return false;

});
});

To finish the application off, add the final CSS styling code in the following listing to
the public/stylesheets/style.css file.

#room-list {
float: right;
width: 100px;
height: 300px;
overflow: auto;

}

#room-list div {
border-bottom: 1px solid #eee;

}

#room-list div:hover {
background-color: #ddd;

}

Listing 2.14 Final additions to style.css

Display results
of a room change

Display
received
messages

Display list
of rooms
available

Allow click of a room
name to change to
that room

Request list of
rooms available
intermittently

Allow submitting the
form to send a chat
message

36 CHAPTER 2 Building a multiroom chat application

#send-message {
width: 700px;
margin-bottom: 1em;
margin-right: 1em;

}

#help {
font: 10px "Lucida Grande", Helvetica, Arial, sans-serif;

}

With the final code added, try running the application (using node server.js). Your
results should look like figure 2.14.

2.6 Summary
You’ve now completed a small real-time web application using Node.js!

 You should have a sense of how the application is constructed and what the code is
like. If aspects of this example application are still unclear, don’t worry: in the follow-
ing chapters we’ll go into depth on the techniques and technologies used in this
example.

 Before you delve into the specifics of Node development, however, you’ll want to
learn how to deal with the unique challenges of asynchronous development. The next
chapter will teach you essential techniques and tricks that will save you a lot of time
and frustration.

Figure 2.14 The completed chat application

39Organizing and reusing Node functionality

in the included file affects the global scope. This means that any variables created and
functions declared in the included file risk overwriting those created and declared by
the application.

 Say you were programming in PHP; your application might contain the following
logic:

function uppercase_trim($text) {
return trim(strtoupper($text));

}

include('string_handlers.php');

If your string_handlers.php file also attempted to define an uppercase_trim function,
you’d receive the following error:

Fatal error: Cannot redeclare uppercase_trim()

In PHP you can avoid this by using namespaces, and Ruby offers similar functionality
through modules. Node, however, avoids this potential problem by not offering an easy
way to accidentally pollute the global namespace.

PHP NAMESPACES, RUBY MODULES PHP namespaces are discussed in the man-
ual at http://php.net/manual/en/language.namespaces.php. Ruby modules
are explained in the Ruby documentation: www.ruby-doc.org/core-1.9.3/
Module.html.

Node modules bundle up code for reuse, but they don’t alter global scope. Suppose,
for example, you were developing an open source content management system (CMS)
application using PHP, and you wanted to use a third-party API library that doesn’t use
namespaces. This library could contain a class with the same name as one in your
application, which would break your application unless you changed the class name
either in your application or the library. Changing the class name in your application,
however, could cause problems for other developers using your CMS as the basis of
their own projects. Changing the class name in the library would require you to
remember to repeat this hack each time you update the library in your application’s
source tree. Naming collisions are a problem best avoided altogether.

 Node modules allow you to select what functions and variables from the included
file are exposed to the application. If the module is returning more than one function
or variable, the module can specify these by setting the properties of an object called
exports. If the module is returning a single function or variable, the property module
.exports can instead be set. Figure 3.2 shows how this works.

 If this seems a bit confusing, don’t worry; we’ll run through a number of examples
in this chapter.

 By avoiding pollution of the global scope, Node’s module system avoids naming
conflicts and simplifies code reuse. Modules can then be published to the npm (Node
Package Manager) repository, an online collection of ready-to-use Node modules, and
shared with the Node community without those using the modules having to worry

41Organizing and reusing Node functionality

return roundTwoDecimals(canadian * canadianDollar);
}
exports.USToCanadian = function(us) {

return roundTwoDecimals(us / canadianDollar);
}

Note that only two properties of the exports object are set. This means only the two
functions, canadianToUS and USToCanadian, can be accessed by the application
including the module. The variable canadianDollar acts as a private variable that
affects the logic in canadianToUS and USToCanadian but can’t be directly accessed by
the application.

 To utilize your new module, use Node’s require function, which takes a path to
the module you wish to use as an argument. Node performs a synchronous lookup in
order to locate the module and loads the file’s contents.

In the next listing, which shows test-currency.js, you require the currency.js module.

var currency = require('./currency');

console.log('50 Canadian dollars equals this amount of US dollars:');

console.log(currency.canadianToUS(50));

console.log('30 US dollars equals this amount of Canadian dollars:');

console.log(currency.USToCanadian(30));

Requiring a module that begins with ./ means that if you were to create your applica-
tion script named test-currency.js in a directory named currency_app, then your
currency.js module file, as represented visually in figure 3.4, would also need to exist
in the currency_app directory. When requiring, the .js extension is assumed, so you
can omit it if desired.

Listing 3.2 Requiring a module

USToCanadian function is
also set in exports module

A note about require and synchronous I/O
require is one of the few synchronous I/O operations available in Node. Because
modules are used often and are typically included at the top of a file, having require
be synchronous helps keep code clean, ordered, and readable.

But avoid using require in I/O-intensive parts of your application. Any synchronous
call will block Node from doing anything until the call has finished. For example, if
you’re running an HTTP server, you would take a performance hit if you used require
on each incoming request. This is typically why require and other synchronous oper-
ations are used only when the application initially loads.

Path uses ./ to indicate that module exists
within same directory as application script

Use currency module’s
canadianToUS function

Use currency module’s
USToCanadian function

42 CHAPTER 3 Node programming fundamentals

After Node has located and evaluated your module, the require function returns the
contents of the exports object defined in the module. You’re then able to use the two
functions returned by the module to do currency conversion.

 If you wanted to put the module into a subdirectory, such as lib, you could do so by
simply changing the line containing the require logic to the following:

var currency = require('./lib/currency');

Populating the exports object of a module gives you a simple way to group reusable
code in separate files.

3.1.2 Fine-tuning module creation using module.exports
Although populating the exports object with functions and variables is suitable for
most module-creation needs, there will be times when you want a module to deviate
from this model.

 The currency converter module created earlier in this section, for example, could
be redone to return a single Currency constructor function rather than an object con-
taining functions. An object-oriented implementation could behave something like
the following:

var Currency = require('./currency');
var canadianDollar = 0.91;

var currency = new Currency(canadianDollar);
console.log(currency.canadianToUS(50));

Returning a function from require, rather than an object, will make your code more
elegant if it’s the only thing you need from the module.

 To create a module that returns a single variable or function, you might guess that
you simply need to set exports to whatever you want to return. But this won’t work,
because Node expects exports to not be reassigned to any other object, function, or
variable. The module code in the next listing attempts to set exports to a function.

currency_app

test-currency.js

currency.js

require('./currency');

Figure 3.4 When you put ./ at the
beginning of a module require, Node will
look in the same directory as the
program file being executed.

43Organizing and reusing Node functionality

var Currency = function(canadianDollar) {
this.canadianDollar = canadianDollar;

}

Currency.prototype.roundTwoDecimals = function(amount) {
return Math.round(amount * 100) / 100;

}

Currency.prototype.canadianToUS = function(canadian) {
return this.roundTwoDecimals(canadian * this.canadianDollar);

}

Currency.prototype.USToCanadian = function(us) {
return this.roundTwoDecimals(us / this.canadianDollar);

}

exports = Currency;

In order to get the previous module code to work as expected, you’d need to replace
exports with module.exports. The module.exports mechanism enables you to
export a single variable, function, or object. If you create a module that populates
both exports and module.exports, module.exports will be returned and exports
will be ignored.

By using either exports or module.exports, depending on your needs, you can orga-
nize functionality into modules and avoid the pitfall of ever-growing application
scripts.

3.1.3 Reusing modules using the node_modules folder
Requiring modules in the filesystem to exist relative to an application is useful for
organizing application-specific code, but isn’t as useful for code you’d like to reuse
between applications or share with others. Node includes a unique mechanism for

Listing 3.3 This module won’t work as expected

Incorrect; Node
doesn’t allow exports
to be overwritten

What really gets exported
What ultimately gets exported in your application is module.exports. exports is set
up simply as a global reference to module.exports, which initially is defined as an
empty object that you can add properties to. So exports.myFunc is just shorthand
for module.exports.myFunc.

As a result, if exports is set to anything else, it breaks the reference between
module.exports and exports. Because module.exports is what really gets
exported, exports will no longer work as expected—it doesn’t reference module
.exports anymore. If you want to maintain that link, you can make module.exports
reference exports again as follows:

module.exports = exports = Currency;

44 CHAPTER 3 Node programming fundamentals

code reuse that allows modules to be required without knowing their location in the
filesystem. This mechanism is the use of node_modules directories.

 In the earlier module example, you required ./currency. If you omit the ./ and
simply require currency, Node will follow a number of rules, as specified in figure 3.5,
to search for this module.

 The NODE_PATH environmental variable provides a way to specify alternative loca-
tions for Node modules. If used, NODE_PATH should be set to a list of directories sepa-
rated by semicolons in Windows or colons in other operating systems.

3.1.4 Caveats
While the essence of Node’s module system is straightforward, there are two things to
be aware of.

No

No

No

No

Yes

Yes

Yes

Yes

Start looking in the same
directory as the program file.

Is the module
a core module?

Return module.

Is module in node_modules
directory in the current directory?

Attempt to move to parent directory.

Does parent directory exist?

Does
module exist in a directory

specified by the NODE_MODULES
environment variable?

Throw exception.

Figure 3.5 Steps to finding a module

45Organizing and reusing Node functionality

First, if a module is a directory, the file in the module directory that will be evaluated
must be named index.js, unless specified otherwise by a file in the module directory
named package.json. To specify an alternative to index.js, the package.json file must
contain JavaScript Object Notation (JSON) data defining an object with a key named
main that specifies the path, within the module directory, to the main file. Figure 3.6
shows a flowchart summarizing these rules.

 Here’s an example of a package.json file specifying that currency.js is the main file:

{
"main": "./currency.js"

}

The other thing to be aware of is Node’s ability to cache modules as objects. If two
files in an application require the same module, the first require will store the data
returned in application memory so the second require won’t need to access and eval-
uate the module’s source files. The second require will, in fact, have the opportunity
to alter the cached data. This “monkey patching” capability allows one module to
modify the behavior of another, freeing the developer from having to create a new
version of it.

 The best way to get comfortable with Node’s module system is to play with it, verify-
ing the behavior described in this section yourself.

 Now that you have a basic understanding of how modules work, let’s move on to
asynchronous programming techniques.

Module directory
found

Contains
package.json file?

package.json file
contains a main

element?

File named by
main element

exists?

File named by
main element
defines module

Throw
exception

Does file named
index.js exist?

File index.js
defines module

Yes

Yes Yes No

YesNo

No

No

Figure 3.6 The package.json file, when placed in a module directory, allows you to
define your module using a file other than index.js.

47Asynchronous programming techniques

The JSON file (titles.json), shown in the following listing, will be formatted as an array
of strings containing titles of posts.

[
"Kazakhstan is a huge country... what goes on there?",
"This weather is making me craaazy",
"My neighbor sort of howls at night"

]

The HTML template file (template.html), shown next, will include just a basic struc-
ture to insert the titles of the blog posts.

<!doctype html>
<html>

<head></head>
<body>

<h1>Latest Posts</h1>
%

</body>
</html>

The code that pulls in the JSON file and renders the web page is shown next
(blog_recent.js). The callback functions are displayed in bold.

var http = require('http');
var fs = require('fs');

http.createServer(function(req, res) {
if (req.url == '/') {

fs.readFile('./titles.json', function(err, data) {
if (err) {

console.error(err);
res.end('Server Error');

}

Listing 3.4 A list of post titles

Listing 3.5 A basic HTML template to render the blog titles

Listing 3.6 An example of the use of callbacks in a simple application

Figure 3.7 An HTML response
from a web server that pulls titles
from a JSON file and returns
results as a web page

% will be replaced
with title data

Create HTTP server
and use callback to
define response logic

Read JSON file and
use callback to
define what to do
with its contents

If error occurs, log error
and return “Server
Error” to client

48 CHAPTER 3 Node programming fundamentals

else {
var titles = JSON.parse(data.toString());

fs.readFile('./template.html', function(err, data) {
if (err) {

console.error(err);
res.end('Server Error');

}
else {

var tmpl = data.toString();

var html = tmpl.replace('%', titles.join(''));
res.writeHead(200, {'Content-Type': 'text/html'});
res.end(html);

}
});

}
});

}
}).listen(8000, "127.0.0.1");

This example nests three levels of callbacks:

http.createServer(function(req, res) { ...
fs.readFile('./titles.json', function (err, data) { ...

fs.readFile('./template.html', function (err, data) { ...

Three levels isn’t bad, but the more levels of callbacks you use, the more cluttered your
code looks, and the harder it is to refactor and test, so it’s good to limit callback nest-
ing. By creating named functions that handle the individual levels of callback nesting,
you can express the same logic in a way that requires more lines of code, but that could
be easier to maintain, test, and refactor. The following listing is functionally equivalent
to listing 3.6.

var http = require('http');
var fs = require('fs');

var server = http.createServer(function (req, res) {
getTitles(res);

}).listen(8000, "127.0.0.1");

function getTitles(res) {
fs.readFile('./titles.json', function (err, data) {

if (err) {
hadError(err, res);

}
else {

getTemplate(JSON.parse(data.toString()), res);
}

})
}

function getTemplate(titles, res) {
fs.readFile('./template.html', function (err, data) {

Listing 3.7 An example of reducing nesting by creating intermediary functions

Parse data
from JSON

text
Read HTML template

and use callback
when it’s loaded

Send HTML
page to user

Assemble HTML page
showing blog titles

Client request
initially comes
in here

Control is passed to getTitles

getTitles pulls
titles and
passes control
to getTemplate

getTemplate reads
template file and passes
control to formatHtml

49Asynchronous programming techniques

if (err) {
hadError(err, res);

}
else {

formatHtml(titles, data.toString(), res);
}

})
}

function formatHtml(titles, tmpl, res) {
var html = tmpl.replace('%', titles.join(''));
res.writeHead(200, {'Content-Type': 'text/html'});
res.end(html);

}

function hadError(err, res) {
console.error(err);
res.end('Server Error');

}

You can also reduce the nesting caused by if/else blocks with another common
idiom in Node development: returning early from a function. The following listing is
functionally the same but avoids further nesting by returning early. It also makes it
explicit that the function should not continue executing.

var http = require('http');
var fs = require('fs');

var server = http.createServer(function (req, res)
getTitles(res);

}).listen(8000, "127.0.0.1");

function getTitles(res) {
fs.readFile('./titles.json', function (err, data) {

if (err) return hadError(err, res)
getTemplate(JSON.parse(data.toString()), res)

})
}

function getTemplate(titles, res) {
fs.readFile('./template.html', function (err, data) {

if (err) return hadError(err, res)
formatHtml(titles, data.toString(), res)

})
}

function formatHtml(titles, tmpl, res) {
var html = tmpl.replace('%', titles.join(''));
res.writeHead(200, {'Content-Type': 'text/html'});
res.end(html);

}

function hadError(err, res) {
console.error(err)
res.end('Server Error')

}

Listing 3.8 An example of reducing nesting by returning early

formatHtml takes
titles and template,
and renders a response
back to client

If an error occurs along
the way, hadError logs
error to console and
responds to client with
“Server Error”

Instead of creating an
else branch, you
return, because if an
error occurred you
don’t need to continue
executing this function.

	Node.js in Action
	brief contents
	contents

