Microsoft Certified Technology Specialist
разработка сайтов
оптимизация сайта
веб-дизайн
продвижение сайтов
SEO
HTML5
CSS3
ASP.NET
ASP.NET MVC
.NET Core
jQuery
Bootstrap
 

Книги для разработчиков

Always will be ready notify the world about expectations as easy as possible: job change page


Mastering Parallel Programming with R

Автор: Simon R. Chapple, Eilidh Troup, Thorsten Forster, Terence Sloan
Год: 2016
Формат: PDF
Страниц: 244
Просмотров: 223

4,24 MB скачать   читать
Описание:

R is one of the most popular programming languages used in data science. Applying R to big data and complex analytic tasks requires the harnessing of scalable compute resources. Mastering Parallel Programming with R presents a comprehensive and practical treatise on how to build highly scalable and efficient algorithms in R. It will teach you a variety of parallelization techniques, from simple use of R’s built-in parallel package versions of lapply(), to high-level AWS cloud-based Hadoop and Apache Spark frameworks. It will also teach you low level scalable parallel programming using RMPI and pbdMPI for message passing, applicable to clusters and supercomputers, and how to exploit thousand-fold simple processor GPUs through ROpenCL. By the end of the book, you will understand the factors that influence parallel efficiency, including assessing code performance and implementing load balancing; pitfalls to avoid, including deadlock and numerical instability issues; how to structure your code and data for the most appropriate type of parallelism for your problem domain; and how to extract the maximum performance from your R code running on a variety of computer systems.

What You Will Learn

- Create and structure efficient load-balanced parallel computation in R, using R’s built-in parallel package
- Deploy and utilize cloud-based parallel infrastructure from R, including launching a distributed computation on Hadoop running on Amazon Web Services (AWS)
- Get accustomed to parallel efficiency, and apply simple techniques to benchmark, measure speed and target improvement in your own code
- Develop complex parallel processing algorithms with the standard Message Passing Interface (MPI) using RMPI, pbdMPI, and SPRINT packages
- Build and extend a parallel R package (SPRINT) with your own MPI-based routines
- Implement accelerated numerical functions in R utilizing the vector processing capability of your Grap
Написать сообщение
Эл. почта
*Сообщение

© 1999–2018 WebDynamics
Valid XHTML 1.0 Transitional Правильный CSS!
1980–... Sergey Drozdov

Area of interests:
.NET | C# | ASP.NET WebForms | ASP.NET MVC | Windows Forms | Windows Phone | HTML5 | CSS3 | jQuery | AJAX | MS SQL Server | Transact-SQL | ADO.NET | Entity Framework | IIS | OOP | OOA | OOD | WCF | WPF | MSMQ | UML | MVC | MVP | MVVM | Design Patterns | Enterprise Architecture | Scrum | Kanban Development