

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[751]

Testing the mobile app
We will now test the mobile app using an iPhone emulator:

1. In Visual Studio for Mac, to the right of the Run button in the toolbar, select
the NorthwindMobile.iOS project, select Debug, and select iPhone XR iOS
12.4 (or later), as shown in the following screenshot:

2. Click on the Run button in the toolbar or navigate to Run | Start
Debugging. The project will build, and then after a few moments, Simulator
will appear, your running mobile app, as shown in the following screenshot:

3. Click Seven Seas Imports and modify its Company Name, as shown in the
following screenshot of the customer details page:

4. Click List to return to the list of customers and note that the company name
has been updated due to the two-way data binding.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[752]

5. Click Add, and then fill in the fields for a new customer, as shown in the
following screenshot:

6. Click Insert Customer and note that the new customer has been added to the
bottom of the list.

7. Slide one of the customers to the left to reveal two action buttons, Phone and
Delete, as shown in the following screenshot:

8. Click Phone and note the pop-up prompt to the user to dial the number of
that customer with Yes and No buttons.

9. Click No.
10. Slide one of the customers to the left to reveal two action buttons, Phone and

Delete, and then click on Delete, and note that the customer is removed.
11. Click, hold, and drag the list down and then release, and note the animation

effect for refreshing the list, but remember that we did not implement this
feature, so the list does not change.

12. Navigate to Simulator | Quit Simulator or press Cmd + Q.
We will now make the mobile app call NorthwindService to get the list of
customers.

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[753]

Consuming a web service from a mobile
app
Apple's App Transport Security (ATS) forces developers to use good practice,
including secure connections between an app and a web service. ATS is enabled by
default and your mobile apps will throw an exception if they do not connect securely.

If you need to call a web service that is secured with a self-signed certificate like our
NorthwindService is, it is possible but complicated.

For simplicity, we will allow insecure connections to the web service and disable the
security checks in the mobile app.

Configuring the web service to allow insecure
requests
First, we will enable the web service to handle insecure connections at a new URL:

1. Start Visual Studio Code and open the NorthwindService project.
2. Open Startup.cs, and in the Configure method, comment out the HTTPS

redirection, as shown highlighted in the following code:
public void Configure(IApplicationBuilder app,
 IWebHostEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 // app.UseHttpsRedirection();

 app.UseRouting();

More Information: You can read more about ATS at the
following link: https://docs.microsoft.com/en-us/
xamarin/ios/app-fundamentals/ats

More Information: You can read more about handling
self-signed certificates at the following link: https://
docs.remotingsdk.com/Clients/Tasks/
HandlingSelfSignedCertificates/NET/

https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/ats
https://docs.microsoft.com/en-us/xamarin/ios/app-fundamentals/ats
https://docs.remotingsdk.com/Clients/Tasks/HandlingSelfSignedCertificates/NET/
https://docs.remotingsdk.com/Clients/Tasks/HandlingSelfSignedCertificates/NET/
https://docs.remotingsdk.com/Clients/Tasks/HandlingSelfSignedCertificates/NET/

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[754]

3. Open Program.cs, and in the CreateHostBuilder method, add the insecure
URL, as shown highlighted in the following code:
public static IHostBuilder CreateHostBuilder(
 string[] args) =>
 Host.CreateDefaultBuilder(args)
 .ConfigureWebHostDefaults(webBuilder =>
 {
 webBuilder.UseStartup<Startup>();
 webBuilder.UseUrls(
 "https://localhost:5001", // for MVC
 "http://localhost:5003" // for iOS
);
 });

4. Navigate to Terminal | New Terminal and select NorthwindService.
5. In Terminal, start the web service by entering the following command:

dotnet run

6. Start Chrome and test that the web service is returning customers as JSON
by navigating to the following URL: http://localhost:5003/api/
customers/

7. Close Chrome.

Configuring the iOS app to allow insecure
connections
Now you will configure the NorthwindMobile.iOS project to disable ATS to allow
insecure HTTP requests to the web service:

1. In the NorthwindMobile.iOS project, open Info.plist.
2. Click the Source tab, add a new entry named NSAppTransportSecurity,

and set its Type to Dictionary.
3. In the dictionary, add a new entry named NSAllowsArbitraryLoads and

set its Type to Boolean with a value of Yes, as shown in the following
screenshot:

http://localhost:5003/api/customers/
http://localhost:5003/api/customers/
http://localhost:5003/api/customers/
http://localhost:5003/api/customers/

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[755]

Adding NuGet packages for consuming a web
service
Next, we must add some NuGet packages to each of the platform-specific projects to
enable HTTP requests and process the JSON responses:

1. In the NorthwindMobile.iOS project, right-click on the folder named
Packages and choose Add NuGet Packages....

2. In the Add Packages dialog, in the Search box, enter System.Net.Http.
3. Select the package named System.Net.Http and then click Add Package.
4. In the License Acceptance dialog, click Accept.
5. In the NorthwindMobile.iOS, right-click on the folder named Packages and

choose Add NuGet Packages....
6. In the Add Packages dialog, in the Search box, enter Newtonsoft.Json.
7. Select the package named Newtonsoft.Json and then click Add Package.
8. Repeat the previous steps, 1 to 7, to add the same two NuGet packages to the

project named NorthwindMobile.Android.

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[756]

Getting customers from the web service
Now, we can modify the customers list page to get its list of customers from the web
service instead of using sample data:

1. In the NorthwindMobile project, open Views\CustomersList.xaml.cs.
2. Import the following namespaces:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Threading.Tasks;
using Newtonsoft.Json;
using NorthwindMobile.Models;
using Xamarin.Forms;

3. Modify the CustomersList constructor to load the list of customers using
the service proxy instead of the AddSampleData method, as shown in the
following code:
public CustomersList()
{
 InitializeComponent();

 Customer.Customers.Clear();
 // Customer.AddSampleData();

 var client = new HttpClient
 {
 BaseAddress = new Uri("http://localhost:5003/")
 };

 client.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 "application/json"));

 HttpResponseMessage response = client
 .GetAsync("api/customers").Result;

 response.EnsureSuccessStatusCode();

 string content = response.Content
 .ReadAsStringAsync().Result;

 var customersFromService = JsonConvert
 .DeserializeObject<IEnumerable<Customer>>(content);

 foreach (Customer c in customersFromService
 .OrderBy(customer => customer.CompanyName))
 {
 Customer.Customers.Add(c);

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[757]

 }

 BindingContext = Customer.Customers;
}

4. Navigate to Build | Clean All. Changes to Info.plist like allowing
insecure connections sometimes requires a clean build.

5. Navigate to Build | Build All.
6. Run the NorthwindMobile project and note that 91 customers are loaded

from the web service, as shown in the following screenshot:

7. Navigate to Simulator | Quit Simulator or press Cmd + Q.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some
hands-on practice, and explore this chapter's topics with more in-depth research.

Exercise 21.1 – Test your knowledge
Answer the following questions:

1. What is the difference between Xamarin and Xamarin.Forms?
2. What are the four categories of Xamarin.Forms user interface components

and what do they represent?
3. List four types of cell.
4. How can you enable a user to perform an action on a cell in a list view?
5. How do you define a dependency service to implement platform-specific

functionality?

C# 8.0 and .NET Core 3.0 – Modern Cross-Platform Development

[758]

6. When would you use an Entry instead of an Editor?
7. What is the effect of setting IsDestructive to true for a menu item in

a cell's context actions?
8. When would you call the methods PushAsync and PopAsync in a Xamarin.

Forms mobile app?
9. How do you show a pop-up modal message with simple button choices like

Yes or No?
10. What is Apple's ATS and why is it important?

Exercise 21.2 - Explore topics
Use the following links to read more about this chapter's topics:

• Xamarin.Forms documentation: https://docs.microsoft.com/en-us/
xamarin/xamarin-forms/

• Xamarin.Essentials provides developers with cross-platform APIs for their
mobile applications: https://docs.microsoft.com/en-us/xamarin/
essentials/

• Self Signed iOS Certifcates and Certificate Pinning in a Xamarin.
Forms application: https://nicksnettravels.builttoroam.com/ios-
certificate/

• Protecting your users with certificate pinning: https://basdecort.
com/2018/07/18/protecting-your-users-with-certificate-pinning/

• HttpClient and SSL/TLS implementation selector for iOS/macOS:
https://docs.microsoft.com/en-gb/xamarin/cross-platform/macios/
http-stack

Summary
In this chapter, you learned how to build a mobile app using Xamarin.Forms,
which is cross-platform for iOS and Android (and potentially other platforms)
and consumes data from a web service using the System.Net.Http and
Newtonsoft.Json NuGet packages.

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
https://docs.microsoft.com/en-us/xamarin/essentials/
https://docs.microsoft.com/en-us/xamarin/essentials/
https://docs.microsoft.com/en-us/xamarin/essentials/
https://docs.microsoft.com/en-us/xamarin/essentials/
https://nicksnettravels.builttoroam.com/ios-certificate/
https://nicksnettravels.builttoroam.com/ios-certificate/
https://basdecort.com/2018/07/18/protecting-your-users-with-certificate-pinning/
https://basdecort.com/2018/07/18/protecting-your-users-with-certificate-pinning/
https://basdecort.com/2018/07/18/protecting-your-users-with-certificate-pinning/
https://docs.microsoft.com/en-gb/xamarin/cross-platform/macios/http-stack
https://docs.microsoft.com/en-gb/xamarin/cross-platform/macios/http-stack

Building Cross-Platform Mobile Apps Using Xamarin.Forms | 21

[759]

Epilogue
I wanted this book to be different from the others on the market. I hope that you
found it to be a brisk, fun read, packed with practical hands-on walk-throughs of
each subject.

For subjects that you wanted to learn more about, I hope that the More Information
notes and links that I provided pointed you in the right direction.

I have already started work on the fifth edition, which we plan to publish soon after
the release of .NET 5.0 in November 2020. If you have suggestions for subjects that
you would like to see covered, or you spot mistakes that need fixing in the book or
code, please let me know via my GitHub account at the following link:

https://github.com/markjprice/

I wish you the best of luck with all your C# and .NET projects!

https://github.com/markjprice/
https://github.com/markjprice/

[761]

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Extreme C

Kamran Amini

ISBN: 978-1-78934-362-5

 ● Build advanced C knowledge on strong foundations, rooted in first principles
 ● Memory structures, compiler pipelines. This book will help you understand how

they work, and how to make the most of them
 ● Apply object-oriented design principles to your procedural C code
 ● Write low-level code that’s close to the hardware and squeezes maximum

performance out of a computer system
 ● Master concurrency, multithreading, multiprocessing, and integration with other

languages
 ● Testing and debugging, packaging and delivery, inter-process communication,

and enterprise architecture for C program

https://www.packtpub.com/in/mobile/c-8-0-and-net-core-3-0-modern-cross-platform-development-fourth-edition

[762]

Other Books You May Enjoy

Developer, Advocate!

Geertjan Wielenga

ISBN: 978-1-78913-874-0

Expert opinions on:
 ● Discover how developer advocates are putting developer interests at the

heart of the software industry in companies including Microsoft and Google
 ● Gain the confidence to use your voice in the tech community
 ● Immerse yourself in developer advocacy techniques
 ● Understand and overcome the challenges and obstacles facing developer

advocates today
 ● Hear predictions from the people at the cutting edge of tech
 ● Explore your career options in developer advocacy

https://www.packtpub.com/in/business-other/developer-advocate

[763]

Other Books You May Enjoy

Leave a review - let other readers know what you
think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book’s Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

[765]

Index
Symbols
.NET

about 7
future versions 9, 10

.NET APIs
reference link 224

.NET Architecture
reference link 457

.NET Core
about 8
reference link 9
versus .NET Framework 249

.NET Core application
deploying 235
publishing 235
self-contained app, publishing 238

.NET Core components
assemblies 227
Base Class Libraries (BCL), of assemblies in

NuGet packages (CoreFX) 227
C# keywords, relating to .NET types 231-233
language compilers 227
namespace, importing to type 231

.NET Core versions
.NET Core 1.0 224
.NET Core 1.1 224
.NET Core 2.0 225
.NET Core 2.1 225
.NET Core 2.2 226
.NET Core 3.0 226

.NET Fiddle
URL 24

.NET Framework
about 7
.NET Portability Analyzer 249

non-.NET Standard libraries, using 250, 251
porting, to .NET Core 247
versus .NET Core 249

.NET Native 14

.NET platforms
for book editions 13

.NET Portability Analyzer 249

.NET Standard
reference link 13, 234

.NET technologies
comparing 14

.NET types
C# keywords, relating 232, 233
inheriting 215

<script> elements
reference link 526

A
abstraction 144
access modifiers

about 150
internal 151
internal protected 151
private 151
private protected 151
protected 151
public 151

acrylic material 690
Advanced Encryption Standard (AES)

used, for encrypting
symmetrically 333-337

aggregation 144
Android SDKs

adding 735, 736
app models

intelligent apps, building 460

[766]

web applications 459
websites, building with ASP.NET Core 458
websites, building with web content

management system 458
App Transport Security (ATS) 753
arguments

naming 168, 169
obtaining 63-65
options, setting with 65, 66

ASP.NET Core, features
about 460
ASP.NET Core 1.0 460
ASP.NET Core 1.1 461
ASP.NET Core 2.0 461
ASP.NET Core 2.1 461
ASP.NET Core 2.2 462
ASP.NET Core 3.0 462

ASP.NET Core Middleware
reference link 517

ASP.NET Core MVC website
actions 518-520
controllers 518-520
controllers, responsibilities 519
Core Identity database, reviewing 514
creating 510, 511
customizing 527
default MVC route 517, 518
entity 522-524
exploring 510-515
filters 520
filters, applying to levels 520
reviewing 512-514
setting up 509, 510
startup 515-517
view models 522-524
views 524-526

ASP.NET Core MVC website customization
about 527
category images, setting up 528
controller action methods, making

asynchronous 546, 547
customized home page, testing 532
custom style, defining 528
database, querying 543
display templates, using 543-545
model binders 535-539
model, validating 539-541

parameters, passing with route
value 533, 534

Razor syntax 528
scalability, improving with asynchronous

tasks 545, 546
typed view, defining 529-531
view helper methods 542

ASP.NET Core project
creating 484-486

ASP.NET Core SignalR 464
ASP.NET Core Web API

about 248, 460
customers repository, configuring 620
data repositories, creating for entities 615
problem details, specifying 625
used, for building web services 607
Web API controller, configuring 620-624
Web API controller, implementing 618-620
web service, acronyms 607, 608
web service, creating from Northwind

database 613, 614
web service's functionality,

reviewing 611, 612
ASP.NET Core Web API project

creating 608-610
assemblies

about 227
decompiling 238-242
versioning 280
versus namespaces 228

assembly metadata
reading 280-282

assignment operators 74
async 451
async streams

working with 454, 455
attributes

working with 279
authentication

about 330
implementing 351-354

authorization
about 330, 349
implementing 351-354
reference link 521

await keyword
about 451
using, in catch blocks 454

[767]

B
bags

working with, LINQ used 404-406
Base Class Library (BCL) 7
big integers

working with 254
binary arithmetic operators 73, 74
binary classification 654
binary number system 42
binary object

converting, to string 95, 96
binary shift operators 77, 78
bitwise operators 77, 78
Blazor

about 464
reference link 466

blog archive page type
reviewing 585

book solution code repository
cloning 18

Booleans
storing 47

Bootstrap
URL 490

Bootstrap grid system
reference link 582

braces
using, with if statements 81

breakpoint
customizing 125, 126
setting 121, 122

Brotli algorithm
used, for compressing 310, 312

byte arrays
strings, encoding as 314, 315, 316

C
C# 1.0 to C# 8.0 26-28
cache busting, via params

reference link 527
casting

between, types 89
within inheritance hierarchies 213

casting exceptions
avoiding 214, 215

catch blocks

await keyword, using 454
C# basics 31
C# compiler versions

discovering 29, 30
enabling 30
reference link 29

C# grammar
about 32
blocks 33
comments 32
statements 32

checked statement
overflow exceptions, throwing with 102, 103

child task 444
circular reference, solving

reference link 228
C# keywords

relating, to .NET types 231-233
classes

extending 208
inheritance, preventing 211
inheriting from 207
members, hiding 209, 210
members, overriding 210
overriding, preventing 211
splitting, with partial 171, 172

classic ASP.NET
versus modern ASP.NET Core 483, 484

class, instantiating
about 147
assembly, referencing 147
namespace, importing 147, 148

class libraries
building 144
class, defining 145, 146
class, initiating 147
creating 145
creating, for Northwind database

context 473, 476
creating, for Northwind entity models 468-472
creating, that needs testing 136, 137
inheriting, from System.Object 149
members 146
multiple files, managing 148
objects 148
setting up 179-181

[768]

CMS
benefits 553, 554
enterprise features 554, 555
features 554
platforms 555

code-behind files
using, with Razor Pages 496, 497

collections
features 266, 267
objects, storing 265
reference link 266
sorting 271
used, for storing multiple values 155, 156

collections, choices
about 267
dictionaries 268, 269
list 268
queues 269
sets 269
stacks 269

Common Language Runtime (CLR) 7
compiler overflow checks

disabling, with unchecked statement 104
complex comma-separated string

splitting 264, 265
complex numbers

defining 583
working with 255

component types, Piranha CMS
blocks 576
custom content templates,

defining 591-593
defining 583
fields 576
regions 576

composition 144
conditional logical operators 76, 77
console application

about 248
building, with Visual Studio Code 15
creating, for publication 235, 236
exploring 58
output, displaying to user 59
responsiveness, improving 451, 452
setting up 179-181
usage, simplifying 62, 63

constructors
used, for initializing fields 159, 160

Content Management System (CMS) 458
content negotiation 613
content types, Piranha CMS

about 575-580
component types 576
pages 575
posts 575
sites 575
standard fields 576

continuation tasks 442
control template

replacing 705-707
conventions

implementing 644
converting

between, types 89
with System.Convert type 92

Core WCF repository
reference link 648

Cross-Origin Resource Sharing (CORS)
enabling 641, 643

cross-platform environments
handling 291-293

cryptography
enhancements 348
random numbers, generating 347, 348

custom attributes
creating 283--285

custom content
custom page types, creating 589
custom regions, creating 587
custom view models, creating 590
defining 586
entity data model, creating 588

custom content templates
defining, for content types 591-593

C# vocabulary
about 33, 34
correct code, writing 34, 35
extent, revealing 36-38
fields 36
methods 35
nouns 36
variables 36
verbs 35

[769]

D
data binding

between elements 707, 708
HTTP service, creating 709
HTTP service data binding, testing 724, 725
numbers, converting to images 717-723
to data, from secure HTTP service 713, 714
user interface, creating to call

HTTP service 715-717
using 707

data manipulation, with EF Core
about 387
entities, deleting 390, 391
entities, inserting 387-389
entities, updating 389, 390

data protection
block sizes 331
IVs 331
IVs, generating 332
keys, generating 332
key sizes 330
keys, using 330
salts 331
techniques 329

data protection, techniques
authentication 330
authorization 330
encryption and decryption 329
hashes 329
signatures 330

data science 651
data seeding

about 368
reference link 368

dates
strings, parsing to 96, 97

deadlocks
avoiding 448, 449

Debug
instrumenting with 129
reference link 129

debugging
during, development 120

decimal number system
using 42

decimal types
versus double types 45-47

deconstruct method
about 205
reference link 166

deep learning 655
default implementations

interfaces, defining with 195-198
default rounding rules 93
default trace listener

writing 130
default values

obtaining, for types 51, 52
delegates

defining 188, 189
handling 188, 189
used, for calling methods 186, 187

dependency injection (DI) design pattern
reference link 516

dependency services 733
dependent assemblies 228
destructor 205
development environment

setting up 2
tools, recommendation 3

dictionaries
about 268, 269
working with 271

Dictionary Attacks
reference link 331

Digital Signature Algorithm (DSA)
about 333
versus RSA 342

directories
managing 294-296

Dispose method 207
DNS

working with 277, 278
Document Database Providers, for Entity

Framework Core
reference link 360

do statement
looping with 87

dotnet CLI
used, for compiling code 17
used, for running code 17

dotnet command
about 236
project, creating 236
project, managing 237

[770]

dotnet templates
installation link 237

dotnet tool
help 19

double- precision floating point numbers 41
double types

versus decimal types 45-47
drives

managing 293, 294
dynamic types

storing 49, 50

E
Editor control

reference link 734
EF Core

annotation attributes 367
connection, to database 365, 366
Fluent API 367
logging 375-379
setting up 364

EF Core conventions
about 366
reference link 366

EF Core data provider
selecting 364

EF Core, loading patterns
about 382
eager loading 383
explicit loading 385, 386
lazy loading 384
reference link 387

EF Core models
building 368, 369
Category and Product entity classes,

defining 369-371
defining 366
Northwind database context class,

defining 371
products, filtering 374, 375
products, sorting 374, 375
querying 372, 373

EF Core, with LINQ
about 406
EF Core model, building 407, 408
sequences, aggregating 415, 416
sequences, filtering 409, 410

sequences, grouping 412-415
sequences, joining 412-415
sequences, projecting into new types 411
sequences, sorting 409, 410

efficiency of types
evaluating 431

encapsulation 144
encryption and decryption 329
endpoint routing

about 645
configuring 645-647
reference link 645, 647

entities
data repositories, creating 615
sorting 401
sorting, by single property with OrderBy

method 401
sorting, by subsequent property with ThenBy

method 402
entities, filtering with Where extension

method
about 397-399
explicit delegate instantiation, removing for

simplifying code 400
lambda expression, targeting 401
named method, targeting 399

entity data model
building, for Northwind database 468

Entity Framework 6.3
reference link 360

Entity Framework Core
about 11
configuring, as service 499, 500
using, with ASP.NET Core 498

entity models 522
Entry control

reference link 734
Enumerable class

used, for extending sequences 396, 397
enum type

used, for storing multiple values 154, 155
used, for storing values 152, 153

escape sequences
reference link 40

events
defining 190
handling 186, 190
raising 186

[771]

exceptions
avoiding, with TryParse method 97, 98
handling, on types conversion 98
inheriting 216
obtaining 100, 102

explicit casting 214
explicit interface

reference link 193
explicit transaction

defining 392, 393
eXtensible Application Markup Language

(XAML) 467, 681
eXtensible Markup Language (XML)

about 317
serializing as 317-319

extension methods
used, for reusing functionality 219

extensions
installing 7

F
factorials

calculating, with recursion 116, 118
fields

about 36
const keyword 158, 159
data, storing 150
defining 150
initializing, with constructors 159-161
marking, as field read-only 159
setting, with default literals 161, 162
static fields 156, 157
using 158, 159

fields, class libraries
constant 146
event 146
read-only 146

file resources
disposing 306-308

files
information, obtaining 299-301
managing 297, 298
text, decoding 316
text, encoding 316
working with 301

filesystem
cross-platform environments,

handling 291-293
directories, managing 294-296
drives, managing 293
file information, obtaining 299-301
files, managing 297, 298
files, working with 301
handling 291, 292
managing 291
paths, managing 299

filtering
by type 402-404

filters
reference link 520

filters, ASP.NET Core MVC website
applying 520
used, for caching response 521
used, for defining custom route 522
used, for securing action method 521

first-in, first-out (FIFO) 269
floating point

reference link 43
Fluent API 367
Fluent Design System

about 690
parallax views 691
Reveal lighting 691
user interface elements, connecting with

animations 691
user interface elements, filling with acrylic

brushes 690
foreach statement

looping with 88
working with 89

format codes
reference link 97

format strings 60
formatting types, in .NET

reference link 61
for statement

looping with 88
functionality

implementing, local functions used 185
implementing, methods used 182, 183
implementing, operators used 184, 185

function pointers 187
functions

documenting, with XML comments 118, 119
unit testing 135

[772]

writing 109, 110
writing, that returns value 112-114

G
General Data Protection Regulation

(GDPR) 461
generic methods

working with 201, 202
generics

about 198
used, for making types safely

reusable 198, 199
generic types

working with 199-201
GET requests

testing, with browser 626, 627
getters and setters

reference link 175
Git

download link 18
using, with Visual Studio Code 18

global filters
defining 382

globalization 286
gRPC

reference link 649
with ASP.NET Core, reference link 649

GUI apps
responsiveness, improving 452, 453
working, rules 452

H
hash algorithm, factors

collision resistance 337
preimage resistance 337

hashes 329
headless CMS 554
Health Check API

implementing 643
health check response

reference link 644
heap memory 202
HttpClientFactory

used, for configuring HTTP clients 638-641
HTTP clients

about 637
configuring, HttpClientFactory used 638-641

used, for consuming services 637
HTTP POST request

reference link 631
HTTP requests

reference link 638
testing, with REST Client extension 627-630

HTTP service
creating 709-711
web service's certificate,

downloading 712, 713
HTTP Strict Transport Security (HSTS) 488
Hypertext Transfer Protocol (HTTP) 477-481

I
IDataView interface

reference link 658
if statement

braces, using with 81
branching with 79, 80
pattern matching with 81

ILSpy tool 239
immutable collections

using 273
implicit casting 214
indexers

defining 175, 176
used, for controlling access 172

indexes
using 275
working with 273

Index type
positions, identifying with 274

inheritance 144
initialization vector (IV)

about 331
generating 332

inner functions 185
INotificationPropertyChanged

interface 732, 733
integers 41
interfaces

defining, with default
implementations 195-198

IComparable 191
IComparer 191
IDisposable 191
IFormatProvider 191

[773]

IFormattable 191
IFormatter 191
implementing 191

intermediate language (IL) 13, 227
internationalization 286
interpolated strings

used, for formatting 59
intersect 269
IP addresses

working with 277, 278
iteration statements 86

J
JavaScript Object Notation (JSON)

about 242, 317 613
future, reference link 324
serializing with 322

Json.NET 322

K
Kestrel

about 483
reference link 483

key 268
key input

obtaining, from user 63
keys

asymmetric key 330
generating 332
private key 330
public key 330
symmetric key 330

key types 659

L
labels 659
Language INtegrated Query (LINQ)

about 395
used, for working with bags 404-406
used, for working with sets 404-406
using, with EF Core 406

Language INtegrated Query (LINQ),
optional parts

lambda expressions 396
LINQ query comprehension syntax 396

Language INtegrated Query (LINQ),
required parts

extension methods 395
LINQ providers 395

last-in, first-out (LIFO) 269
layouts 494
legacy Windows Forms application

migrating 687, 688
legacy Windows platforms

.NET Core 3.0 support 683
libraries

packaging, for NuGet distribution 242
Like

for pattern matching 380, 381
LINQ extension methods

creating 421-424
LINQ queries

sequences, extending with Enumerable
class 396

writing 395
LINQ syntax

sweetening, with syntactic sugar 416
LINQ to XML

used, for generating XML 425
used, for reading XML 426
working with 425

lists
about 268
working with 270

ListView control
about 735
reference link 735

literal value 39
local functions

used, for implementing functionality 185
localization 286
local variable

declaring 50
type, inferring 50, 51
type, specifying 50, 51

lock statement 448, 449
logging

during, development 128
during, runtime 128

logical operators 75, 76
Long Term Support (LTS) 10

M
Mac build host, connecting

[774]

reference link 731
machine learning

about 651, 652
life cycle 652, 653
reference link 652
tasks 654, 655

Markdown
reference link 702

matrix factorization, in recommender systems
reference link 660

media types
reference link 608

members, class libraries
fields 146
methods 146

memory
managing, with reference type 203
managing, with value type 203

memory usage
monitoring 432

MessagePack
reference link 464

metapackages 227
method categories, class libraries

constructor 146
indexer 146
operator 146
property 146

methods
about 186
calling 162
calling, delegates used 186, 187
overloading 167
parameters, defining 166
parameters, passing 166
simplifying 181
used, for implementing

functionality 182, 183
values, returning from 162
writing 162

method signature 167
Microsoft.AspNetCore.Mvc.Api.Analyzers

reference link 644
Microsoft Azure Machine Learning 655
Microsoft Docs

URL 19
Microsoft documentation 19
Microsoft.NET.Test.Sdk

reference link 137
Microsoft's plans, for .NET 5.0

reference link 9
Microsoft Visual Studio 2019

installing, for Windows 683
Microsoft Visual Studio Code versions

about 4, 5
URL 4

miscellaneous operators
about 79
reference link 79

missing values 659
ML.NET

about 656
reference link 656

ML.NET learning pipelines
algorithms 657
data loading 657
model deployment 657
model evaluation 657
model training 657
transformations 657

mobile 731
mobile app

main page, setting 750
testing 751, 752
web service, consuming from 753

mobile platforms, pros and cons
reference link 732

model training
concepts 657, 658

modern ASP.NET Core
versus classic ASP.NET 483, 484

Mono 730
multi-class classification 654
multiple actions

running, synchronously 438
running synchronously, tasks used 439

multiple returned values
combining, with tuples 163, 165

multiple threads
app, creating from 418
resource, accessing 446, 447
using, with Parallel LINQ (PLINQ) 418

multiple values
storing 52, 53

multitasking
types 453

[775]

mutually exclusive lock
applying, to resource 447, 448

N
namespace

about 228
importing 62
importing, to type 231
versus assemblies 228

Naming Guidelines
reference link 39

natural language processing (NLP) 655
natural numbers 41
navbar, Bootstrap

reference link 572
nested functions 185
nested task 444
network resources

working with 276
non-.NET Standard libraries

using 250, 251
non-nullable parameters

declaring 55, 56, 57
non-nullable reference types

enabling 55
non-nullable variables

declaring 55, 56, 57
non-polymorphic inheritance 212
NoSQL data store 359
NuGet distribution

libraries, packaging 242
NuGet packages

about 230
adding, for consuming web service 755
benefits 230
dependencies, fixing 243
library, packaging 243-246
reference link 322
referencing 242
types 230

nullable reference types
about 54
enabling 55
reference link 54, 55

nullable value type
creating 53, 54

null-coalescing operator

reference link 58
null-conditional operator

reference link 58
null values

checking for 57, 58
working with 53

numbered positional arguments
used, for formatting 59

numbers
casting, explicitly 90-92
casting, implicitly 90-92
converting, from ordinal to cardinal 114-116
rounding 92
storing 41
strings, parsing to 96, 97
working with 253

number sizes
code, writing to explore 44

O
object graphs

compact XML, generating 320
high-performance JSON processing 323-325
serializing 317
serializing, as XML 317-319
serializing, with JSON 322, 323
XML files, deserializing 321

object-oriented programming (OOP)
about 143
abstraction 144
aggregation 144
composition 144
encapsulation 144
inheritance 144
polymorphism 144

object-relational mapping (ORM) 360
objects

comparing, separate class used 194, 195
comparing, when sorting 192, 193

object type
storing 48, 49

official .NET blog
subscribing 23

Open API analyzers
implementing 644

operating system, keyboard shortcuts
download link 5

[776]

operators
used, for implementing

functionality 184, 185
optional parameters

passing 168, 169
options

setting, with arguments 65, 66
OrderBy method

used, for sorting entities by single
property 401

outputting field values
setting 151, 152

overfitting
reference link 654

overflow
checking for 102

overflow exceptions
throwing, with checked statement 102, 103

P
PackageLicenseExpression

reference link 244
PackageReference format

reference link 246
packages 227
parallax views 691
Parallel LINQ (PLINQ)

used, for using multiple threads 418
parameters

passing, ways 170, 171
params keyword

reference link 168
partial

used, for splitting classes 171, 172
password-based key derivation function

(PBKDF2) 332
paths

managing 299
pattern matching

reference link 85
with if statement 81
with Like 380, 381
with switch statement 84, 85

patterns, and switch expressions
reference link 86

performance usage
monitoring 431, 432

pipelines
about 312
reference link 313
used, for high-performance streams 312

Piranha CMS
about 555, 556
application service 574
authentication, exploring 567-570
authorization, exploring 567-570
blog archive, reviewing 566, 567
child page, creating 564
component types, reviewing 581, 582
configuration, exploring 570, 571
content, testing 571
content types 575
design principles 555
media 574
open source libraries 556
page content, editing 559-563
reference link 556
routing 572, 573
site content, editing 559-563
standard blocks 580
standard blocks, reviewing 581, 582
top-level page, creating 563
website, creating 556-559
website, exploring 556-559

platforms
about 227
handling, that not support API 66

polymorphic inheritance 212
polymorphism 144, 212
pooling database contexts

about 391
reference 391

positions
identifying, with Index type 274

problem details, HTTP APIs
reference link 625

process 429, 430
Process type

VirtualMemorySize64 434
WorkingSet64 434

product recommendations, making
about 659
data gathering 661, 662
data processing 661-665
problem analysis 660

[777]

project templates
additional packs, installing 548
using 547, 548

properties
used, for controlling access 172

Q
query tags

logging with 380
reference link 380

queues 269

R
random numbers

generating 346
generating, for cryptography 347, 348
generating, for games 346

ranges
identifying, with Range type 275
using 275
working with 273

ranking 654
Razor class libraries

using 503-505
Razor pages

code-behind files, using with 496, 497
defining 493
enabling 492
exploring 492
shared layouts, using with 494, 496
used, for manipulating data 500

readonly properties
defining 172, 173

real numbers
storing 43

recommendations 654
recursion

factorials, converting with 116-118
reference link 116

reference type
about 203
used, for managing memory 203

reflection 285
regression 655
regular expression

examples 263, 264
pattern, matching with 260

reference link 263
syntax 262

Relational Database Management System
(RDBMS) 359

Representational State Transfer (REST) 608
resources

sharing 704, 705
using 704

resource usage
monitoring 431

response caching
reference link 521

REST Client extension
reference link 627
used, for testing HTTP requests 627-631

Reveal lighting
about 691
reference link 691

Roslyn
about 227
reference link 227

rounding rules
about 94
reference link 94

route constraints
reference link 611

route value
used, for passing parameters 533, 534

routing, ASP.NET Core
reference link 647

RSA algorithm
reference link 342
used, for signing data 342-345

Runtime IDentifier (RID)
about 236
reference link 236

S
salt 331
sample relational database

using 361
scaffold identity

reference link 516
sealed keyword 217
Secure Sockets Layer (SSL) 330
selection statements 79
self-contained app

[778]

publishing 238
self-signed certificates

handling, reference link 753
semantic versioning

rules 280
rules, URL 280

separate class
used, for comparing objects 194, 195

sequence 396
server

pinging 278, 279
sets

about 269, 404
working with, LINQ used 404-406

settable properties
defining 174, 175

SHA1 collision
reference 338

SHA256
used, for hashing data 338-341
used, for signing data 342-345

shared layouts
using, with Razor Pages 494, 496

shared resources
accessing, from multiple threads 446, 447
access synchronization, interlocked 446
access synchronization, monitor 446
access, synchronizing 445
mutually exclusive lock, applying 447, 448

SharpPad
used, for dumping variables 126-128

SignalR
about 463, 464
reference link 464

signatures 330
Silverlight applications 248
Simple Object Access Protocol (SOAP) 608
Single Page Applications (SPA) 613
single precision floating point numbers 41
Singular-Value Decomposition (SVD) 660
slots 451
solution code

downloading, from GitHub repository 17
spans

reference link 274
using, for memory efficiency 274
working with 273

specialized collections

using 272
SQLite

Northwind sample database, creating for 362
reference link 362
setting up, for macOS 362
setting up, for Windows 362

SQLiteStudio
Northwind sample database, managing

with 363, 364
SQL statements, SQLite

reference link 363
stack memory 202, 203
Stack Overflow

answers, looking on 21
stacks 269
standard blocks, Piranha CMS

columns 580
image 580
quote 580

standard page type
reviewing 583, 584

start up
configuring 594-596
importing, from database 594-596

static files
enabling 489-491

static methods
used, for reusing functionality 218

Stopwatch type
ElapsedMilliseconds property 434
Elapsed property 433
Restart method 433
Stop method 433

streams
about 301
compressing 309, 310
file resources, disposing 306-308
text streams, writing to 303, 304
used, for reading files 301, 302
used, for writing to files 301, 302
XML streams, writing to 305, 306

string
binary object, converting to 95, 96
characters, obtaining of 256
checking, for content 258
length, obtaining of 256
part, obtaining of 257, 258
splitting 257

[779]

types, converting to 94, 95
string formatting 259
strings

building efficiently 260
encodings, as byte arrays 314-316
parsing, to dates 96, 97
parsing, to number 96, 97
parsing, to times 96, 97

struct types
working with 203, 204

Structured Query Language (SQL) 396
supervised classification 654
supplier model

enabling, to insert entities 500, 501
Support Vector Machine (SVM) 657
Swagger

enabling 627, 631, 632
reference link 631, 632

Swagger UI
about 631
used, for testing requests 632-637

switch expressions
used, for simplifying switch statements 85
using 114

switch statement
branching with 82
pattern matching with 84, 85
using 114
simplifying, with switch expressions 85

symbols 262
synchronization types

applying 451
syntactic sugar

used, for Sweetening LINQ syntax 417
syntax

of regular expression 262
System.Convert type

converting with 92
System.IO.FileSystem

reference link 231
System.Text.Json APIs

reference link 323

T
tasks

about 429, 430
child tasks 444

nested tasks 444
pros and cons, reference link 441
running, asynchronously 437
used, for running multiple actions

asynchronously 439-441
waiting for 441, 442
working 444

Task.WaitAll(Task[]) method 441
Task.WaitAny(Task[]) method 441
templates

control template, replacing 705
defining 583
using 704

test controller logic
reference link 520

Test Driven Development (TDD)
about 135
reference link 135

testing dataset 653
text

decoding 313
decoding, in files 316
digits entered, checking as 261
encoding 313
encoding, in files 316
storing 40
working with 255

text encodings
ANSI/ISO encodings 314
ASCI 314
UTF-7 314
UTF-8 314
UTF-16 314
UTF-32 314

text input
obtaining, from user 61

text streams
writing to 303, 304

ThenBy method
used, for sorting entities by single

property 402
thread 429, 430
thread pool

reference link 430
Trace

instrumenting with 129
trace levels

switching 132-135

[780]

trace listeners
about 129
configuring 130, 131
reference link 129

training dataset 653
transactions

about 391
ACID properties 392
explicit transaction 392, 393

truth tables
reference link 75

try block
error-prone code, wrapping 99, 100

TryParse method
used, for avoiding exceptions 97, 98

tuple name inference 165
tuples

deconstructing 166
fields, naming 165
names, inferring 165
used, for combining multiple returned

values 163-165
two-way data binding

entity model, creating with 738, 741
types

about 36
casting 89
converting 89
converting, to string 94, 95
default values, obtaining 51, 52
definitions 19-21
extending 217
namespace, importing 231
working with 279

type-safe method pointer 187

U
unary operators 72, 73
unchecked statement

used, for disabling compiler overflow
checks 104, 105

underfitting
reference link 654

Uniform Resource Locator (URL) 477
unit tests

running 139
writing 137

Universal Windows Platform (UWP)
about 11, 467, 681
reference link 248

unmanaged resources
about 306
releasing 205-207

unsupervised classification 654
upgradeable read mode 451
uploaded package

testing 246, 247
URIs

working with 277, 278
user interface elements

connecting, with animations 691
filling, with acrylic brushes 690

user interface (UI) thread 452
users

authenticating 349, 350
authorizing 349, 350

UWP apps 682, 692
UWP Community Toolkit

reference link 702

V
values

assigning 39
storing, with enum type 152, 153

value type
used, for managing memory 203

variables
about 36
dumping, with SharpPad 126-128
operating on 71, 72
working with 38

verbatim strings
about 40
reference link 41

verbs 35
version compatibility, setting

benefits, reference link 614
view helper methods

ActionLink 542
AntiForgeryToken 542
Display 542
DisplayFor 542
DisplayForModel 542
Editor 542

[781]

EditorFor 542
EditorForModel 542
Encode 542
PartialAsync 542
Raw 542
RenderPartialAsync 542

views
creating, for customer details 744
creating, for customers list 744

Visual Studio 2019
reference link 2
using, for Windows app development 3

Visual Studio Code
downloading 6
download link 6
Git, using with 18
installing 6
reference link 2
used, for building console apps 15
used, for writing code 15-17
using, for cross-platform development 2

Visual Studio Code, default key bindings
reference link 5

Visual Studio Code, for C#
reference link 6

Visual Studio Code workspaces
using 47, 48

Visual Studio for Mac
about 729
using, for mobile development 3

W
Web API controller

implementing 618-620
web applications

about 459
scalability, improving 453

WebAssembly (Wasm)
about 465
reference link 465

web development 477
web services

about 608
building 460
building, with ASP.NET Core Web API 607
configuring, to allow insecure

requests 753, 754

consuming, from mobile app 753
customers, obtaining from 756, 757
documenting 626
GET requests, testing with browser 626
HTTP requests, testing with REST

Client extension 627
NuGet packages, adding for

consumption of 755
scalability, improving 453
Swagger, enabling 631
Swagger UI, used for testing

requests 632, 633
testing 626

website
building, with web content management

system 458
securing 486-489
testing 486-489

WebSocket
about 463
reference link 463

Where extension method
used, for filtering entities 397-399

while statement
looping with 86

whole numbers
about 41
storing 42, 43

Windows
debugging 123
Microsoft Visual Studio 2019, installing 683
SQLite, setting up for 362

Windows 10
used, for creating app from multiple

threads 419
Windows app, creating

about 694
acrylic brushes, exploring 698, 699
common controls, exploring 698, 699
more controls, installing 702, 703
Reveal, exploring 699-701
UWP project, creating 694-698

Windows app development
Visual Studio 2019, using for 3

Windows Communication Foundation
(WCF) 248, 482, 608

Windows Compatibility Pack
reference link 689

[782]

used, for migrating legacy apps 689
Windows desktop apps

building 467
Windows Forms

about 681
application, building 684, 685
application, reviewing 686
working with 684

Windows Forms app
migrating 688
migrating, to .NET Core 3.0 689
migration, reference link 689

Windows Forms designer
progress tracking, reference link 685

Windows platform
about 689
Fluent Design System 690
Universal Windows Platform 690
XAML Standard 691

Windows Presentation Foundation (WPF)
248, 467, 681

WPF apps 692
write mode 451

X
Xamarin

about 730
extending, with Xamarin.Forms 730

Xamarin apps 692
Xamarin dependency services

reference link 733
Xamarin.Forms

about 730
used, for building mobile apps 735
used, for extending Xamarin 730

Xamarin.Forms Pages
reference link 734

Xamarin.Forms Projects
reference link 729

Xamarin.Forms solution
creating 736, 737

Xamarin.Forms user interface components
about 733
categories 733
cells 734
layouts 733
pages 733

views 734
Xamarin projects 8
XAML

controls, selecting 693
markup extensions 693
used, for specifying code 692

XAML Standard
about 691
reference link 692

XML
generating, with LINQ to XML 425
reading, with LINQ to XML 426

XML comments
functions, documenting with 118, 119

XML files
deserializing 321, 322

XMLHttpRequest 463
XML streams

writing to 305, 306

