

70 Chapter 3 Working with Functions

return x === arguments[0];

}

function nonstrict(x) {
arguments[0] = "modified";
return x === arguments[0];

3

strict("unmodified"); // false

nonstrict("unmodified"); // true

As a consequence, it is much safer never to modify the arguments
object. This is easy enough to avoid by first copying its elements to a
real array. A simple idiom for implementing the copy is:

var args = [].slice.call(arguments);

The slice method of arrays makes a copy of an array when called
without additional arguments, and its result is a true instance of the
standard Array type. The result is guaranteed not to alias anything,
and has all the normal Array methods available to it directly.

We can fix the callMethod implementation by copying arguments, and
since we only need the elements after obj and method, we can pass a
starting index of 2 to slice:

function callMethod(obj, method) {
var args = [].sTice.call(arguments, 2);
return obj[method].apply(obj, args);

}

At last, callMethod works as expected:

var obj = {

add: function(x, y) { return x + y; }
3
callMethod(obj, "add", 17, 25); // 42

Things to Remember

+ Never modify the arguments object.

+ Copy thearguments objecttoareal array using [].slice.call(arguments)
before modifying it.

Item 24: Use a Variable to Save a Reference to
arguments

An iterator is an object providing sequential access to a collection of
data. A typical API provides a next method that provides the next
value in the sequence. Imagine we wish to write a convenience

Item 24: Use a Variable to Save a Reference to arguments 71

function that takes an arbitrary number of arguments and builds an
iterator for those values:

var it = values(l1, 4, 1, 4, 2, 1, 3, 5, 6);
it.next(Q; // 1
it.next(Q; // 4
it.next(Q; // 1

The values function must accept any number of arguments, so we con-
struct our iterator object to iterate over the elements of the arguments
object:

function values() {
var i = 0, n = arguments.length;
return {
hasNext: function() {
return i < n;

1,
next: function() {
if (i >=n) {
throw new Error("end of iteration");
}
return arguments[i++]; // wrong arguments
}

};
}

But this code is broken, which becomes clear as soon as we attempt
to use an iterator object:

var it = values(l1, 4, 1, 4, 2, 1, 3, 5, 6);
it.next(); // undefined
it.next(); // undefined
it.next(Q); // undefined

The problem is due to the fact that a new arguments variable is implic-
itly bound in the body of each function. The arguments object we are
interested in is the one associated with the values function, but the
iterator’s next method contains its own arguments variable. So when
we return arguments[i++], we are accessing an argument of it.next
instead of one of the arguments of values.

The solution is straightforward: Simply bind a new local variable in
the scope of the arguments object we are interested in, and make sure
that nested functions only refer to that explicitly named variable:

function values() {
var i = 0, n = arguments.length, a = arguments;
return {

72 Chapter 3 Working with Functions

hasNext: function() {
return i < n;

1,
next: function() {
if (3 >=n) {
throw new Error("end of iteration");
}
return ali++];
}

};
}
var it = values(l1, 4, 1, 4, 2, 1, 3, 5, 6);
it.next(Q; // 1
it.next(Q); // 4
it.nextQ; // 1

Things to Remember
+ Be aware of the function nesting level when referring to arguments.

+ Bind an explicitly scoped reference to arguments in order to refer to
it from nested functions.

Item 25: Use bind to Extract Methods with a Fixed
Receiver

With no distinction between a method and a property whose value
is a function, it’'s easy to extract a method of an object and pass the
extracted function directly as a callback to a higher-order function.
But it’s also easy to forget that an extracted function’s receiver is not
bound to the object it was taken from. Imagine a little string buffer
object that stores strings in an array that can be concatenated later:

var buffer = {
entries: [],
add: function(s) {
this.entries.push(s);
3,
concat: function() {
return this.entries.join("");
}
};

It might seem possible to copy an array of strings into the buffer by
extracting its add method and calling it repeatedly on each element of
the source array using the ES5 forEach method:

Item 25: Use bind to Extract Methods with a Fixed Receiver 73

var source = ["867", "-", "5309"];
source.forEach(buffer.add); // error: entries is undefined

But the receiver of buffer.add is not buffer. A function’s receiver is
determined by how it is called, and we are not calling it here. Instead,
we pass it to forEach, whose implementation calls it somewhere that
we can't see. As it turns out, the implementation of forEach uses the
global object as the default receiver. Since the global object has no
entries property, this code throws an error. Luckily, forEach also
allows callers to provide an optional argument to use as the receiver
of its callback, so we can fix this example easily enough:

var source = ["867", "-", "5309"];
source.forEach(buffer.add, buffer);
buffer.join(Q; // "867-5309"

Not all higher-order functions offer their clients the courtesy of pro-
viding a receiver for their callbacks. What if forEach did not accept
the extra receiver argument? A good solution is to create a local func-
tion that makes sure to call buffer.add with the appropriate method
call syntax:

var source = ["867", "-", "5309"];

source.forEach(function(s) {
buffer.add(s);

s

buffer.join(Q; // "867-5309"

This version creates a wrapper function that explicitly calls add as
a method of buffer. Notice how the wrapper function itself does not
refer to this at all. No matter how the wrapper function is called—as
a function, as a method of some other object, or via call—it always
makes sure to push its argument on the destination array.

Creating a version of a function that binds its receiver to a specific
object is so common that ES5 added library support for the pattern.
Function objects come with a bind method that takes a receiver object
and produces a wrapper function that calls the original function as a
method of the receiver. Using bind, we can simplify our example:

var source = ["867", "-", "5309"];
source.forEach(buffer.add.bind(buffer));
buffer.joinQ; // "867-5309"

Keep in mind that buffer.add.bind(buffer) creates a new function
rather than modifying the buffer.add function. The new function
behaves just like the old one, but with its receiver bound to buffer,
while the old one remains unchanged. In other words:

74 Chapter 3 Working with Functions

buffer.add === buffer.add.bind(buffer); // false

This is a subtle but crucial point: It means that bind is safe to call
even on a function that may be shared by other parts of a program. It
is especially important for methods shared on a prototype object: The
method will still work correctly when called on any of the prototype’s
descendants. (See Chapter 4 for more on objects and prototypes.)

Things to Remember

+ Beware that extracting a method does not bind the method’s
receiver to its object.

+ When passing an object’s method to a higher-order function, use an
anonymous function to call the method on the appropriate receiver.

+ Use bind as a shorthand for creating a function bound to the appro-
priate receiver.

Item 26: Use bind to Curry Functions

The bind method of functions is useful for more than just binding
methods to receivers. Imagine a simple function for constructing URL
strings from components:

function simpleURL(protocol, domain, path) {
return protocol + "://" + domain + "/" + path;

}

Frequently, a program may need to construct absolute URLs from
site-specific path strings. A natural way to do this is with the ES5 map
method on arrays:

var urls = paths.map(function(path) {
return simpleURL("http", siteDomain, path);
B

Notice how the anonymous function uses the same protocol string
and the same site domain string on each iteration of map; the first two
arguments to simpleURL are fixed for each iteration, and only the third
argument is needed. We can use the bind method on simpleURL to con-
struct this function automatically:

var urls = paths.map(simpleURL.bind(null, "http", siteDomain));

The call to simpleURL.bind produces a new function that dele-
gates to simpleURL. As always, the first argument to bind provides
the receiver value. (Since simpleURL does not refer to this, we can

Item 27: Prefer Closures to Strings for Encapsulating Code 75

use any value; null and undefined are customary.) The arguments
passed to simpleURL are constructed by concatenating the remain-
ing arguments of simpleURL.bind to any arguments provided to the
new function. In other words, when the result of simpleURL.bind
is called with a single argument path, the function delegates to
simpleURL("http", siteDomain, path).

The technique of binding a function to a subset of its arguments
is known as currying, named after the logician Haskell Curry, who
popularized the technique in mathematics. Currying can be a suc-
cinct way to implement function delegation with less boilerplate than
explicit wrapper functions.

Things to Remember

+ Use bind to curry a function, that is, to create a delegating function
with a fixed subset of the required arguments.

+ Pass null or undefined as the receiver argument to curry a function
that ignores its receiver.

Item 27: Prefer Closures to Strings for Encapsulating
Code

Functions are a convenient way to store code as a data structure that
can be executed later. This enables expressive higher-order abstrac-
tions such as map and forEach, and it is at the heart of JavaScript’s
asynchronous approach to I/O (see Chapter 7). At the same time, it’s
also possible to represent code as a string to pass to eval. Program-
mers are then confronted with a decision to make: Should code be
represented as a function or as a string?

When in doubt, use a function. Strings are a much less flexible repre-
sentation of code for one very important reason: They are not closures.

Consider a simple function for repeating a user-provided action mul-
tiple times:

function repeat(n, action) {
for (var i = 0; i < n; i++) {
eval(action);
}
}

At global scope, using this function will work reasonably well,
because any variable references that occur within the string will be
interpreted by eval as global variables. For example, a script that

76 Chapter 3 Working with Functions

benchmarks the speed of a function might just use global start and
end variables to store the timings:

var start = [], end = [], timings = [];
repeat (1000,
"start.push(Date.now()); f(); end.push(Date.now())");
for (var i = 0, n = start.length; i < n; i++) {
timings[i] = end[i] - start[i];
}

But this script is brittle. If we simply move the code into a function,
then start and end are no longer global variables:

function benchmark() {

var start = [], end = [], timings = [];

repeat (1000,
"start.push(Date.now()); f(); end.push(Date.now())");

for (var i = 0, n = start.length; i < n; i++) {
timings[i] = end[i] - start[i];

}

return timings;

}

This function causes repeat to evaluate references to the global vari-
ables start and end. In the best case, one of the globals will be miss-
ing, and calling benchmark will throw a ReferenceError. If we're really
unlucky, the code will actually call push on some global objects that
happen to be bound to start and end, and the program will behave
unpredictably.

A more robust API accepts a function instead of a string:

function repeat(n, action) {
for (var i = 0; i < n; i++) {
action();
}
}

This way, the benchmark script can safely refer to local variables
within a closure that it passes as the repeated callback:

function benchmark() {
var start = [], end = [], timings = [];
repeat (1000, function() {
start.push(Date.now());
O3

Item 28: Avoid Relying on the toString Method of Functions 77

end.push(Date.now());

b;

for (var i = 0, n = start.length; i < n; i++) {
timings[i] = end[i] - start[i];

}

return timings;

}

Another problem with eval is that high-performance engines typically
have a harder time optimizing code inside a string, since the source
code may not be available to the compiler early enough to optimize in
time. A function expression can be compiled at the same time as the
code it appears within, making it much more amenable to standard
compilation.

Things to Remember

+ Never include local references in strings when sending them to APIs
that execute them with eval.

+ Prefer APIs that accept functions to call rather than strings to eval.

Item 28: Avoid Relying on the toString Method of
Functions

JavaScript functions come with a remarkable feature—the ability to
reproduce their source code as a string:

(function(x) {
return x + 1;
P .toString(Q; // "function (x) {\n return x + 1;\n}"

Reflecting on the source code of a function is powerful, and clever
hackers occasionally find ingenious ways to put it to use. But there
are serious limitations to the toString method of functions.

First of all, the ECMAScript standard does not impose any require-
ments on the string that results from a function’s toString method.
This means that different JavaScript engines will produce different
strings, and may not even produce strings that bear any resemblance
to the function.

In practice, JavaScript engines do attempt to provide a faithful repre-
sentation of the source code of a function, as long as the function was
implemented in pure JavaScript. An example of where this fails is
with functions produced by built-in libraries of the host environment:

78 Chapter 3 Working with Functions

(function(x) {
return x + 1;
P .bind(16).toString(; // "function (x) {\n [native code]\n}"

Since in many host environments, the bind function is implemented
in another programming language (typically C++), it produces a com-
piled function that has no JavaScript source code for the environment
to reveal.

Because browser engines are allowed by the standard to vary in their
output from toString, it is all too easy to write a program that works
correctly in one JavaScript system but fails in another. JavaScript
implementations will even make small changes (e.g., the whitespace
formatting) that could break a program that is too sensitive to the
exact details of function source strings.

Finally, the source code produced by toString does not provide a rep-
resentation of closures that preserves the values associated with their
inner variable references. For example:

(function(x) {
return function(y) {
return x + y;
}
P 42) . toString(); // "function (y) {\n return x + y;\n}"

Notice how the resultant string still contains a variable reference to x,
even though the function is actually a closure that binds x to 42.

These limitations make it difficult to depend on extracting function
source in a manner that is both useful and reliable, and should gener-
ally be avoided. Very sophisticated uses of function source extraction
should employ carefully crafted JavaScript parsers and processing
libraries. But when in doubt, it’s safest to treat a JavaScript function
as an abstraction that should not be broken.

Things to Remember

+ JavaScript engines are not required to produce accurate reflections
of function source code via toString.

+ Never rely on precise details of function source, since different
engines may produce different results from toString.

+ The results of toString do not expose the values of local variables
stored in a closure.

+ In general, avoid using toString on functions.

Item 29: Avoid Nonstandard Stack Inspection Properties 79

Item 29: Avoid Nonstandard Stack Inspection
Properties

Many JavaScript environments have historically provided some capa-
bilities to inspect the call stack: the chain of active functions that are
currently executing (see Item 64 for more about the call stack). In
some older host environments, every arguments object came with two
additional properties: arguments.callee, which refers to the function
that was called with arguments, and arguments.caller, which refers to
the function that called it. The former is still supported in many envi-
ronments, but it does not serve much of a purpose, short of allowing
anonymous functions to refer to themselves recursively:

var factorial = (function(n) {
return (n <= 1) ? 1 : (n * arguments.callee(n - 1));

s

But this is not particularly useful, since it’s more straightforward for
a function just to refer to itself by name:

function factorial(n) {
return (n <= 1) ? 1 : (n * factorial(n - 1));
}

The arguments.caller property is more powerful: It refers to the func-
tion that made the call with the given arguments object. This feature
has since been removed from most environments out of security con-
cerns, so it’s not reliable. Many JavaScript environments also pro-
vide a similar property of function objects—the nonstandard but
widespread caller property, which refers to the function’s most recent
caller:

function revealCaller() {
return revealCaller.caller;

}

function start() {
return revealCaller(Q);

}

start() === start; // true

It is tempting to try to use this property to extract a stack trace: a
data structure providing a snapshot of the current call stack. Build-
ing a stack trace seems deceptively simple:

function getCallStack() {
var stack = [];

80 Chapter 3 Working with Functions

for (var f = getCallStack.caller; f; f = f.caller) {
stack.push(f);

}

return stack;

}

For simple call stacks, getCallStack appears to work fine:

function f1() {
return getCallStack(Q);
}

function 20 {
return f10;
}

var trace = f20);
trace; // [f1l, 2]

But getCaliStack is easily broken: If a function shows up more than
once in the call stack, the stack inspection logic gets stuck in a loop!

function f(n) {
return n === 0 ? getCallStack(Q) : f(n - 1);
}

var trace = f(1); // infinite loop

What went wrong? Since the function f calls itself recursively, its
caller property is automatically updated to refer back to f. So the
loop in getCallStack gets stuck perpetually looking at f. Even if we
tried to detect such cycles, there’s no information about what function
called f before it called itself—the information about the rest of the
call stack is lost.

Each of these stack inspection facilities is nonstandard and limited in
portability or applicability. Moreover, they are all explicitly disallowed
in ES5 strict functions; attempted accesses to the caller or callee
properties of strict functions or arguments objects throw an error:

function T {
"use strict";
return f.caller;

}

f(Q; // error: caller may not be accessed on strict functions

Item 29: Avoid Nonstandard Stack Inspection Properties 81

The best policy is to avoid stack inspection altogether. If your reason
for inspecting the stack is solely for debugging, it's much more reli-
able to use an interactive debugger.

Things to Remember

4+ Avoid the nonstandard arguments.caller and arguments.callee,
because they are not reliably portable.

+ Avoid the nonstandard caller property of functions, because it does
not reliably contain complete information about the stack.

This page intentionally left blank

Objects and
Prototypes

Objects are JavaScript’s fundamental data structure. Intuitively, an
object represents a table relating strings to values. But when you dig
deeper, there is a fair amount of machinery that goes into objects.

Like many object-oriented languages, JavaScript provides support
for implementation inheritance: the reuse of code or data through a
dynamic delegation mechanism. But unlike many conventional lan-
guages, JavaScript’s inheritance mechanism is based on prototypes
rather than classes. For many programmers, JavaScript is the first
object-oriented language they encounter without classes.

In many languages, every object is an instance of an associated class,
which provides code shared between all its instances. JavaScript, by
contrast, has no built-in notion of classes. Instead, objects inherit
from other objects. Every object is associated with some other object,
known as its prototype. Working with prototypes can be different from
classes, although many concepts from traditional object-oriented lan-
guages still carry over.

Item 30: Understand the Difference between
prototype, getPrototypeOf, and __proto__

Prototypes involve three separate but related accessors, all of which
are named with some variation on the word prototype. This unfor-
tunate overlap naturally leads to quite a bit of confusion. Let’s get
straight to the point.

= C.prototype is used to establish the prototype of objects created
by new CQ).

= Object.getPrototypeOf(obj) is the standard ES5 mechanism for
retrieving obj’s prototype object.

84 Chapter 4 Objects and Prototypes

= obj.__proto__ is a nonstandard mechanism for retrieving obj’s
prototype object.

To understand each of these, consider a typical definition of a Java-
Script datatype. The User constructor expects to be called with the
new operator and takes a name and the hash of a password string and
stores them on its created object.

function User(name, passwordHash) {
this.name = name;
this.passwordHash = passwordHash;

}

User.prototype.toString = function() {
return "[User " + this.name + "1";

};

User.prototype.checkPassword = function(password) {
return hash(password) === this.passwordHash;

1

var u = new User("sfalken",
"0ef33ae791068ec64b502d6cb0191387");

The User function comes with a default prototype property, con-
taining an object that starts out more or less empty. In this exam-
ple, we add two methods to the User.prototype object: toString and
checkPassword. When we create an instance of User with the new oper-
ator, the resultant object u gets the object stored at User.prototype
automatically assigned as its prototype object. Figure 4.1 shows a
diagram of these objects.

Notice the arrow linking the instance object u to the prototype object
User.prototype. This link describes the inheritance relationship.
Property lookups start by searching the object’s own properties;
for example, u.name and u.passwordHash return the current values
of immediate properties of u. Properties not found directly on u are
looked up in u’s prototype. Accessing u.checkPassword, for example,
retrieves a method stored in User.prototype.

This leads us to the next item in our list. Whereas the prototype prop-
erty of a constructor function is used to set up the prototype relation-
ship of new instances, the ES5 function Object.getPrototypeOf() can
be used to retrieve the prototype of an existing object. So, for exam-
ple, after we create the object u in the example above, we can test:

Object.getPrototypeOf(u) === User.prototype; // true

Item 30: The Difference between prototype, getPrototypeOf, and __proto__

Function.prototype

.apply
.bind

.call

User.prototype

.prototype |----------- »

.toString

.checkPassword

prototype

.nhame

.passwordHash

Figure 4.1 Prototype relationships for the User constructor and
instance

85

86 Chapter 4 Objects and Prototypes

Some environments produce a nonstandard mechanism for retrieving
the prototype of an object via a special __proto__ property. This can
be useful as a stopgap for environments that do not support ES5’s
Object.getPrototypeOf. In such environments, we can similarly test:

u._ proto__ === User.prototype; // true

A final note about prototype relationships: JavaScript programmers
will often describe User as a class, even though it consists of little
more than a function. Classes in JavaScript are essentially the com-
bination of a constructor function (User) and a prototype object used
to share methods between instances of the class (User.prototype).

User

.prototype f------.-. >

.toString

.checkPassword

A

i instance

.hame

.passwordHash

Figure 4.2 Conceptual view of the User “class”

Item 31: Prefer Object.getPrototypeOf to __proto__ 87

Figure 4.2 provides a good way to think about the User class concep-
tually. The User function provides a public constructor for the class,
and User.prototype is an internal implementation of the methods
shared between instances. Ordinary uses of User and u have no need
to access the prototype object directly.

Things to Remember
+ C.prototype determines the prototype of objects created by new CQ.

+ Object.getPrototypeOf(obj) is the standard ES5 function for retriev-
ing the prototype of an object.

+ obj.__proto__ is a nonstandard mechanism for retrieving the proto-
type of an object.

+ A class is a design pattern consisting of a constructor function and
an associated prototype.

Item 31: Prefer Object.getPrototypeOf to __proto__

ES5 introduced Object.getPrototypeOf as the standard API for
retrieving an object’s prototype, but only after a number of JavaScript
engines had long provided the special __proto__ property for the same
purpose. Not all JavaScript environments support this extension,
however, and those that do are not entirely compatible. Environments
differ, for example, on the treatment of objects with a null prototype.
In some environments, __proto__ is inherited from Object.prototype,
so an object with a null prototype has no special __proto__ property:

var empty = Object.create(null); // object with no prototype
"__proto__ " 1in empty; // false (in some environments)

In others, __proto__ is always handled specially, regardless of an
object’s state:

var empty = Object.create(null); // object with no prototype
"__proto__" 1in empty; // true (in some environments)

Wherever Object.getPrototypeOf is available, it is the more stan-
dard and portable approach to extracting prototypes. Moreover, the
__proto__ property leads to a number of bugs due to its pollution of
all objects (see Item 45). JavaScript engines that currently support
the extension may choose in the future to allow programs to dis-
able it in order to avoid these bugs. Preferring Object.getPrototypeOf
ensures that code will continue to work even if __proto__ is disabled.

88 Chapter 4 Objects and Prototypes

For JavaScript environments that do not provide the ES5 API, it is
easy to implement in terms of __proto__:

if (typeof Object.getPrototypeOf === "undefined") {
Object.getPrototypeOf = function(obj) {
var t = typeof obj;
if (lobj || (t !== "object" && t !== "function")) {
throw new TypeError("not an object");
3
return obj.__proto__;
};
}

This implementation is safe to include in ES5 environments, because
it avoids installing the function if Object.getPrototypeOf already
exists.

Things to Remember

+ Prefer the standards-compliant Object.getPrototypeOf to the non-
standard __proto__ property.

+ Implement Object.getPrototypeOf in non-ES5 environments that
support __proto__.

Item 32: Never Modify __ proto__

The special __proto__ property provides an additional power that
Object.getPrototypeOf does not: the ability to modify an object’s
prototype link. While this power may seem innocuous (after all, it’s
just another property, right?), it actually has serious implications
and should be avoided. The most obvious reason to avoid modifying
__proto__ is portability: Since not all platforms support the ability to
change an object’s prototype you simply can’t write portable code that
does it.

Another reason to avoid modifying __proto__ is performance. All
modern JavaScript engines heavily optimize the act of getting and
setting object properties, since these are some of the most common
operations that JavaScript programs perform. These optimizations
are built on the engine’s knowledge of the structure of an object.
When you change the object’s internal structure, say, by adding or
removing properties to the object or an object in its prototype chain,
some of these optimizations are invalidated. Modifying __proto__
actually changes the inheritance structure itself, which is the most
destructive change possible. This can invalidate many more optimi-
zations than modifications to ordinary properties.

Item 33: Make Your Constructors new-Agnostic 89

But the biggest reason to avoid modifying __ proto__ is for main-
taining predictable behavior. An object’s prototype chain defines its
behavior by determining its set of properties and property values.
Modifying an object’s prototype link is like giving it a brain trans-
plant: It swaps the object’s entire inheritance hierarchy. It may be
possible to imagine exceptional situations where such an operation
could be helpful, but as a matter of basic sanity, an inheritance hier-
archy should remain stable.

For creating new objects with a custom prototype link, you can use
ESbH’s Object.create. For environments that do not implement ES5,
Item 33 provides a portable implementation of Object.create that
does not rely on __proto__.

Things to Remember
+ Never modify an object’s __proto__ property.

+ Use Object.create to provide a custom prototype for new objects.

Item 33: Make Your Constructors new-Agnostic

When you create a constructor such as the User function in Item 30,
you rely on callers to remember to call it with the new operator. Notice
how the function assumes that the receiver is a brand-new object:

function User(name, passwordHash) {
this.name = name;
this.passwordHash = passwordHash;

}

If a caller forgets the new keyword, then the function’s receiver
becomes the global object:

var u = User("baravelli", "d8b74df393528d51cd19980ae0aal28e");
u; // undefined

this.name; // "baravelli"

this.passwordHash; // "d8b74df393528d51cd19980ae0aa028e"

Not only does the function uselessly return undefined, it also disas-
trously creates (or modifies, if they happen to exist already) the global
variables name and passwordHash.

If the User function is defined as ES5 strict code, then the receiver
defaults to undefined:

function User(name, passwordHash) {
"use strict";
this.name = name;

90 Chapter 4 Objects and Prototypes

this.passwordHash = passwordHash;

var u = User("baravelli", "d8b74df393528d51cd19980ae0aal28e");
// error: this is undefined

In this case, the faulty call leads to an immediate error: The first line
of User attempts to assign to this.name, which throws a TypeError. So,
at least with a strict constructor function, the caller can quickly dis-
cover the bug and fix it.

Still, in either case, the User function is fragile. When used with new
it works as expected, but when used as a normal function it fails. A
more robust approach is to provide a function that works as a con-
structor no matter how it’s called. An easy way to implement this is to
check that the receiver value is a proper instance of User:

function User(name, passwordHash) {
if (! (this instanceof User)) {
return new User(name, passwordHash);
}
this.name = name;
this.passwordHash = passwordHash;

}

This way, the result of calling User is an object that inherits from
User.prototype, regardless of whether it’s called as a function or as a
constructor:

var x = User("baravelli", "d8b74df393528d51cd19980ae0aal28e");

var y = new User("baravelli",
"d8b74df393528d51cd19980ae0aa028e");

x instanceof User; // true

y 1instanceof User; // true

One downside to this pattern is that it requires an extra function call,
so it is a bit more expensive. It’s also hard to use for variadic func-
tions (see Items 21 and 22), since there is no straightforward analog
to the apply method for calling variadic functions as constructors. A
somewhat more exotic approach makes use of ES5’s Object.create:

function User(name, passwordHash) {
var self = this instanceof User
? this
: Object.create(User.prototype);
self.name = name;
self.passwordHash = passwordHash;

Item 33: Make Your Constructors new-Agnostic 91

return self;

}

Object.create takes a prototype object and returns a new object that
inherits from it. So when this version of User is called as a function,
the result is a new object inheriting from User.prototype, with the
name and passwordHash properties initialized.

While Object.create is only available in ES5, it can be approximated
in older environments by creating a local constructor and instantiat-
ing it with new:

if (typeof Object.create === "undefined") {
Object.create = function(prototype) {
function CQ { }
C.prototype = prototype;
return new CQ;
};
}

(Note that this only implements the single-argument version of
Object.create. The real version also accepts an optional second argu-
ment that describes a set of property descriptors to define on the new
object.)

What happens if someone calls this new version of User with new?
Thanks to the constructor override pattern, it behaves just like it
does with a function call. This works because JavaScript allows the
result of a new expression to be overridden by an explicit return from
a constructor function. When User returns self, the result of the new
expression becomes self, which may be a different object from the one
bound to this.

Protecting a constructor against misuse may not always be worth
the trouble, especially when you are only using a constructor locally.
Still, it’s important to understand how badly things can go wrong if a
constructor is called in the wrong way. At the very least, it's import-
ant to document when a constructor function expects to be called
with new, especially when sharing it across a large codebase or from a
shared library.

Things to Remember

+ Make a constructor agnostic to its caller’s syntax by reinvoking
itself with new or with Object.create.

+ Document clearly when a function expects to be called with new.

92 Chapter 4 Objects and Prototypes

Item 34: Store Methods on Prototypes

It’s perfectly possible to program in JavaScript without prototypes. We
could implement the User class from Item 30 without defining any-
thing special in its prototype:

function User(name, passwordHash) {
this.name = name;
this.passwordHash = passwordHash;
this.toString = function() {
return "[User " + this.name + "]";

1

this.checkPassword = function(password) {
return hash(password) === this.passwordHash;

1

}

For most purposes, this class behaves pretty much the same as its
original implementation. But when we construct several instances of
User, an important difference emerges:

var ul = new User(/* ... */);
var u2 = new User(/* ... */);
var u3 = new User(/* ... */);

Figure 4.3 shows what these three objects and their prototype object
look like. Instead of sharing the toString and checkPassword methods
via the prototype, each instance contains a copy of both methods, for
a total of six function objects.

By contrast, Figure 4.4 shows what these three objects and their
prototype object look like using the original definition. The toString
and checkPassword methods are created once and shared between all
instances through their prototype.

Storing methods on a prototype makes them available to all instances
without requiring multiple copies of the functions that implement
them or extra properties on each instance object. You might expect
that storing methods on instance objects could optimize the speed of
method lookups such as u3.toString(), since it doesn’'t have to search
the prototype chain to find the implementation of toString. However,
modern JavaScript engines heavily optimize prototype lookups, so
copying methods onto instance objects is not necessarily guaranteed
to provide noticeable speed improvements. And instance methods are
almost certain to use more memory than prototype methods.

Item 34: Store Methods on Prototypes

User.prototype

v A >
prototype prototype prototype
.toString .toString .toString
.checkPassword .checkPassword .checkPassword
.hame .name .hame
.passwordHash .passwordHash .passwordHash
Figure 4.3 Storing methods on instance objects
User.prototype
.toString
.checkPassword
S T
prototype prototype prototype
.name .name .name
.passwordHash .passwordHash .passwordHash

Figure 4.4 Storing methods on a prototype object

93

94 Chapter 4 Objects and Prototypes

Things to Remember

+ Storing methods on instance objects creates multiple copies of the
functions, one per instance object.

+ Prefer storing methods on prototypes over storing them on instance
objects.

Item 35: Use Closures to Store Private Data

JavaScript’s object system does not particularly encourage or enforce
information hiding. The name of every property is a string, and any
piece of a program can get access to any of the properties of an object
simply by asking for it by name. Features such as for...in loops and
ES5’s Object.keys() and Object.getOwnPropertyNames() functions
even make it easy to learn all the property names of an object.

Often, JavaScript programmers resort to coding conventions rather
than any absolute enforcement mechanism for private properties. For
example, some programmers use naming conventions such as prefix-
ing or suffixing private property names with an underscore character
(). This does nothing to enforce information hiding, but it suggests
to well-behaved users of an object that they should not inspect or
modify the property so that the object can remain free to change its
implementation.

Nevertheless, some programs actually call for a higher degree of hid-
ing. For example, a security-sensitive platform or application frame-
work may wish to send an object to an untrusted application without
risk of the application tampering with the internals of the object.
Another situation where enforcement of information hiding can be
useful is in heavily used libraries, where subtle bugs can crop up
when careless users accidentally depend on or interfere with imple-
mentation details.

For these situations, JavaScript does provide one very reliable mecha-
nism for information hiding: the closure.

Closures are an austere data structure. They store data in their
enclosed variables without providing direct access to those variables.
The only way to gain access to the internals of a closure is for the
function to provide access to it explicitly. In other words, objects and
closures have opposite policies: The properties of an object are auto-
matically exposed, whereas the variables in a closure are automati-
cally hidden.

We can take advantage of this to store truly private data in an object.
Instead of storing the data as properties of the object, we store it as

Item 36: Store Instance State Only on Instance Objects 95

variables in the constructor, and turn the methods of the object into
closures that refer to those variables. Let’s revisit the User class from
Item 30 once more:

function User(name, passwordHash) {
this.toString = function() {
return "[User " + name + "]";

3

this.checkPassword = function(password) {
return hash(password) === passwordHash;

1

}

Notice how, unlike in other implementations, the toString and
checkPassword methods refer to name and passwordHash as variables,
rather than as properties of this. An instance of User now contains no
instance properties at all, so outside code has no direct access to the
name and password hash of an instance of User.

A downside to this pattern is that, in order for the variables of the
constructor to be in scope of the methods that use them, the methods
must be placed on the instance object. Just as Item 34 discussed,
this can lead to a proliferation of copies of methods. Nevertheless, in
situations where guaranteed information hiding is critical, it may be
worth the additional cost.

Things to Remember
+ Closure variables are private, accessible only to local references.

+ Use local variables as private data to enforce information hiding
within methods.

Item 36: Store Instance State Only on Instance
Objects

Understanding the one-to-many relationship between a prototype
object and its instances is crucial to implementing objects that behave
correctly. One of the ways this can go wrong is by accidentally storing
per-instance data on a prototype. For example, a class implement-
ing a tree data structure might contain an array of children for each
node. Putting the array of children on the prototype object leads to a
completely broken implementation:

function Tree(x) {

this.value = x;

96 Chapter 4 Objects and Prototypes

Tree.prototype = {
children: [1, // should be instance state!
addChild: function(x) {
this.children.push(x);
}
};

Consider what happens when we try to construct a tree with this
class:

var left = new Tree(2);
left.addChild(1);
left.addChild(3);

var right = new Tree(6);
right.addChild(5);
right.addChild(7);

var top = new Tree(4);
top.addChild(left);
top.addChild(right);

top.children; // [1, 3, 5, 7, left, right]

Each time we call addChild, we append a value to Tree.prototype
.children, which contains the nodes in the order of any calls to
addChild anywhere! This leaves the Tree objects in the incoherent
state shown in Figure 4.5.

The correct way to implement the Tree class is to create a separate
children array for each instance object:

function Tree(x) {
this.value = x;

this.children = []; // instance state
}
Tree.prototype = {
addChild: function(x) {
this.children.push(x);
}
};

Running the same example code above, we get the expected state,
shown in Figure 4.6.

Item 36: Store Instance State Only on Instance Objects

prototype’,/'/

Teft

.value

Tree.prototype

.children

.addChild

A

prototype

right :

.value

v

prototype

97

---»[1, 3, 5, 7, left, right]

Figure 4.5 Storing instance state on a prototype object

Teft

.value

.children

prototype’_,/’/

Tree.prototype

add.child
i
| prototype
right !
-2 .value
--»[1, 3]| .children

-6

top
.value -4
prototype
top
.value F---4
.children t---»[Teft, right]

--»[5, 7]

Figure 4.6 Storing instance state on instance objects

98 Chapter 4 Objects and Prototypes

The moral of this story is that stateful data can be problematic
when shared. Methods are generally safe to share between multiple
instances of a class because they are typically stateless, other than
referring to instance state via references to this. (Since the method
call syntax ensures that this is bound to the instance object even for
a method inherited from a prototype, shared methods can still access
instance state.) In general, any immutable data is safe to share on a
prototype, and stateful data can in principle be stored on a prototype,
too, so long as it’s truly intended to be shared. But methods are by far
the most common data found on prototype objects. Per-instance state,
meanwhile, must be stored on instance objects.

Things to Remember

+ Mutable data can be problematic when shared, and prototypes are
shared between all their instances.

+ Store mutable per-instance state on instance objects.

Item 37: Recognize the Implicit Binding of this

The CSV (comma-separated values) file format is a simple text repre-
sentation for tabular data:

Bosendorfer,1828,Vienna,Austria
Fazioli,1981,Sacile,Italy
Steinway,1853,New York,USA

We can write a simple, customizable class for reading CSV data. (For
simplicity, we’ll leave off the ability to parse quoted entries such as
"hello, world".) Despite its name, CSV comes in different varieties
allowing different characters for separators. So our constructor takes
an optional array of separator characters and constructs a custom
regular expression to use for splitting each line into entries:

function CSVReader(separators) {
this.separators = separators || [","];
this.regexp =
new RegExp(this.separators.map(function(sep) {
return "\\" + sep[0];
P .join("["));
}
A simple implementation of a read method can proceed in two steps:

First, split the input string into an array of individual lines; second,
split each line of the array into individual cells. The result should

Item 37: Recognize the Implicit Binding of this 99

then be a two-dimensional array of strings. This is a perfect job for
the map method:

CSVReader.prototype.read = function(str) {
var lines = str.trim().split(/\n/);
return Tines.map(function(line) {
return Tine.split(this.regexp); // wrong this!
s
};

var reader = new CSVReader();
reader.read("a,b,c\nd,e,f\n"); // [["a,b,c"], ["d,e,f"]]

This seemingly simple code has a major but subtle bug: The callback
passed to lines.map refers to this, expecting to extract the regexp
property of the CSVReader object. But map binds its callback’s receiver
to the Tines array, which has no such property. The result: this.regexp
produces undefined, and the call to Tine.split goes haywire.

This bug is the result of the fact that this is bound in a different
way from variables. As Items 18 and 25 explain, every function has
an implicit binding of this, whose value is determined when the
function is called. With a lexically scoped variable, you can always
tell where it receives its binding by looking for an explicitly named
binding occurrence of the name: for example, in a var declara-
tion list or as a function parameter. By contrast, this is implicitly
bound by the nearest enclosing function. So the binding of this in
CSVReader.prototype.read is different from the binding of this in the
callback function passed to Tines.map.

Luckily, similar to the forEach example in Item 25, we can take
advantage of the fact that the map method of arrays takes an optional
second argument to use as a this-binding for the callback. So in this
case, the easiest fix is to forward the outer binding of this to the call-
back by way of the second map argument:

CSVReader.prototype.read = function(str) {
var lines = str.trim().split(/\n/);
return Tines.map(function(line) {
return Tine.split(this.regexp);
}, this); // forward outer this-binding to callback
};

var reader = new CSVReader();
reader.read("a,b,c\nd,e,f\n");

// [[Hall, "b", "C"], [”d", "e"’ "_F"]J

100 Chapter 4 Objects and Prototypes

Now, not all callback-based APIs are so considerate. What if map did
not accept this additional argument? We would need another way to
retain access to the outer function’s this-binding so that the callback
could still refer to it. The solution is straightforward enough: Just use
a lexically scoped variable to save an additional reference to the outer
binding of this:

CSVReader.prototype.read = function(str) {
var lines = str.trim().split(/\n/);
var self = this; // save a reference to outer this-binding
return Tines.map(function(line) {
return Tine.split(self.regexp); // use outer this
s
1

var reader = new CSVReader();

reader.read("a,b,c\nd,e,f\n");

// [["a","b","c"], ["d","e","f"]]

Programmers commonly use the variable name self for this pattern,
signaling that the only purpose for the variable is as an extra alias to
the current scope’s this-binding. (Other popular variable names for
this pattern are me and that.) The particular choice of name is not of
great importance, but using a common name makes it easier for other
programmers to recognize the pattern quickly.

Yet another valid approach in ES5 is to use the callback function’s
bind method, similar to the approach described in Item 25:

CSVReader.prototype.read = function(str) {
var lines = str.trim().split(/\n/);
return Tines.map(function(line) {
return Tine.split(this.regexp);
}.bind(this)); // bind to outer this-binding
};

var reader = new CSVReader();
reader.read("a,b,c\nd,e,f\n");

// [[”a”, I’b"’ "C"]’ [”d”’ I’ell, "f"]]
Things to Remember

+ The scope of this is always determined by its nearest enclosing
function.

+ Use a local variable, usually called self, me, or that, to make a
this-binding available to inner functions.

Item 38: Call Superclass Constructors from Subclass Constructors 101

Item 38: Call Superclass Constructors from Subclass
Constructors

A scene graph is a collection of objects describing a scene in a visual
program such as a game or graphical simulation. A simple scene con-
tains a collection of all of the objects in the scene, known as actors,
a table of preloaded image data for the actors, and a reference to the
underlying graphics display, often known as the context:

function Scene(context, width, height, images) {
this.context = context;
this.width = width;

this.height = height;
this.images = images;
this.actors = [];

}

Scene.prototype.register = function(actor) {
this.actors.push(actor);

1

Scene.prototype.unregister = function(actor) {
var i = this.actors.indexOf(actor);
if (0 >=0) {
this.actors.splice(i, 1);
}
};

Scene.prototype.draw = function() {
this.context.clearRect(0, 0, this.width, this.height);
for (var a = this.actors, i = 0, n = a.length;

i< n;
i++) {
alil.draw();

};

All actors in a scene inherit from a base Actor class, which abstracts
out common methods. Every actor stores a reference to its scene
along with coordinate positions and then adds itself to the scene’s
actor registry:

function Actor(scene, x, y) {
this.scene = scene;
this.x = x;
this.y = y;
scene.register(this);

102 Chapter 4 Objects and Prototypes

To enable changing an actor’s position in the scene, we provide a
moveTo method, which changes its coordinates and then redraws the
scene:

Actor.prototype.moveTo = function(x, y) {
this.x = x;
this.y = vy;
this.scene.draw();

1

When an actor leaves the scene, we remove it from the scene graph’s
registry and redraw the scene:

Actor.prototype.exit = function() {
this.scene.unregister(this);
this.scene.draw();

};

To draw an actor, we look up its image in the scene graph image table.
We'll assume that every actor has a type field that can be used to look
up its image in the image table. Once we have this image data, we
can draw it onto the graphics context, using the underlying graphics
library. (This example uses the HTML Canvas API, which provides a
drawImage method for drawing an Image object onto a <canvas> ele-
ment in a web page.)

Actor.prototype.draw = function() {
var image = this.scene.images[this.type];
this.scene.context.drawImage(image, this.x, this.y);
};
Similarly, we can determine an actor’s size from its image data:

Actor.prototype.width = function() {
return this.scene.images[this.type].width;

};

Actor.prototype.height = function() {
return this.scene.images[this.type].height;

1

We implement specific types of actors as subclasses of Actor. For
example, a spaceship in an arcade game would have a SpaceShip class
that extends Actor. Like all classes, SpaceShip is defined as a con-
structor function. But in order to ensure that instances of SpaceShip
are properly initialized as actors, the constructor must explicitly call
the Actor constructor. We do this by invoking Actor with the receiver
bound to the new object:

Item 38: Call Superclass Constructors from Subclass Constructors 103

function SpaceShip(scene, x, y) {
Actor.call(this, scene, x, y);
this.points = 0;

}

Calling the Actor constructor first ensures that all the instance
properties created by Actor are added to the new object. After that,
SpaceShip can define its own instance properties such as the ship’s
current points count.

In order for SpaceShip to be a proper subclass of Actor, its prototype
must inherit from Actor.prototype. The best way to do the extension
is with ES5’s Object.create:

SpaceShip.prototype = Object.create(Actor.prototype);

(Item 33 describes an implementation of Object.create for environ-
ments that do not support ES5.) If we had tried to create SpaceShip’s
prototype object with the Actor constructor, there would be several
problems. The first problem is that we don’'t have any reasonable
arguments to pass to Actor:

SpaceShip.prototype = new Actor();

When we initialize the SpaceShip prototype, we haven’t yet created any
scenes to pass as the first argument. And the SpaceShip prototype
doesn’t have a useful x or y coordinate. These properties should be
instance properties of individual SpaceShip objects, not properties of
SpaceShip.prototype. More problematically, the Actor constructor adds
the object to the scene’s registry, which we definitely do not want to
do with the SpaceShip prototype. This is a common phenomenon with
subclasses: The superclass constructor should only be invoked from
the subclass constructor, not when creating the subclass prototype.

Once we've created the SpaceShip prototype object, we can add all the
properties that are shared by instances, including a type name for
indexing into the scene’s table of image data and methods specific to
spaceships.

SpaceShip.prototype.type = "spaceShip";

SpaceShip.prototype.scorePoint = function() {
this.points++;

}s

SpaceShip.prototype.left = function() {
this.moveTo(Math.max(this.x - 10, 0), this.y);
};

104 Chapter 4 Objects and Prototypes

SpaceShip.prototype.right = function() {
var maxWidth = this.scene.width - this.width(Q);
this.moveTo(Math.min(this.x + 10, maxWidth), this.y);
}s
Figure 4.7 shows a diagram of the inheritance hierarchy for instances
of SpaceShip. Notice how the scene, x, and y properties are defined

Actor

Actor.prototype

.prototype = f---cooooe- >

.moveTo

.exit
.width
.height

SpaceShip f

prototype
SpaceShip.prototype

.prototype |----------- »

.type
.score
.left
.right

A
| prototype
ship

.scene

X

8%
.points

Figure 4.7 An inheritance hierarchy with subclasses

Item 39: Never Reuse Superclass Property Names 105

only on the instance object, rather than on any prototype object,
despite being created by the Actor constructor.

Things to Remember

+ Call the superclass constructor explicitly from subclass construc-
tors, passing this as the explicit receiver.

+ Use Object.create to construct the subclass prototype object to
avoid calling the superclass constructor.

Item 39: Never Reuse Superclass Property Names

Imagine that we wish to add functionality to the scene graph library
of Item 38 for collecting diagnostic information, which can be use-
ful for debugging or profiling. To do this, we'd like to give each Actor
instance a unique identification number:

function Actor(scene, x, y) {
this.scene = scene;
this.x = x;
this.y = vy;
this.id = ++Actor.nextID;
scene.register(this);

}

Actor.nextID = 0;

Now let’s do the same thing for individual instances of a subclass of
Actor—say, an Alien class representing enemies of our spaceship. In
addition to its actor identification number, we'd like each alien to have
a separate alien identification number.

function Alien(scene, x, y, direction, speed, strength) {

Actor.call(this, scene, x, y);

this.direction = direction;

this.speed = speed;

this.strength = strength;

this.damage = 0;

this.id = ++Alien.nextID; // conflicts with actor 1id!
}

Alien.nextID = 0;

This code creates a conflict between the Alien class and its Actor
superclass: Both classes attempt to write to an instance property
called id. While each class may consider the property to be “private”
(i.e., only relevant and accessible to methods defined directly on that

106 Chapter 4 Objects and Prototypes

class), the fact is that the property is stored on instance objects and
named with a string. If two classes in an inheritance hierarchy refer
to the same property name, they will refer to the same property.

As a result, subclasses must always be aware of all properties used by
their superclasses, even if those properties are conceptually private.
The obvious resolution in this case is to use distinct property names
for the Actor identification number and Alien identification number:

function Actor(scene, x, y) {
this.scene = scene;
this.x = x;
this.y = y;
this.actorID = ++Actor.nextID; // distinct from alienID
scene.register(this);

b
Actor.nextID = 0;

function Alien(scene, x, y, direction, speed, strength) {

Actor.call(this, scene, x, y);

this.direction = direction;

this.speed = speed;

this.strength = strength;

this.damage = 0;

this.alienID = ++Alien.nextID; // distinct from actorID
}

Alien.nextID = 0;

Things to Remember
+ Be aware of all property names used by your superclasses.

+ Never reuse a superclass property name in a subclass.

Item 40: Avoid Inheriting from Standard Classes

The ECMAScript standard library is small, but it comes with a hand-
ful of important classes such as Array, Function, and Date. It can be
tempting to extend these with subclasses, but unfortunately their
definitions have enough special behavior that well-behaved sub-
classes are impossible to write.

A good example is the Array class. A library for operating on file sys-
tems might wish to create an abstraction of directories that inherits
all of the behavior of arrays:

Item 40: Avoid Inheriting from Standard Classes 107

function Dir(path, entries) {
this.path = path;
for (var i = 0, n = entries.length; i < n; i++) {
this[i] = entries[i];
3
}

Dir.prototype = Object.create(Array.prototype);
// extends Array

Unfortunately, this approach breaks the expected behavior of the
Tength property of arrays:
var dir = new Dir("/tmp/mysite",

["index.html", "script.js", "style.css"]);
dir.length; // 0

The reason this fails is that the length property operates specially
on objects that are marked internally as “true” arrays. The ECMA-
Script standard specifies this as an invisible internal property called
[[Class]]. Don't let the name mislead you—dJavaScript doesn’t secretly
have an internal class system. The value of [[Class]] is just a simple
tag: Array objects (created by the Array constructor or the [] syntax)
are stamped with the [[Class]] value "Array", functions are stamped
with the [[Class]] value "Function", and so on. Table 4.1 shows the
complete set of [[Class]] values defined by ECMAScript.

So what does this magic [[Class]] property have to do with Tength?
As it turns out, the behavior of length is defined specially for objects
whose [[Class]] internal property has the value "Array". For these
objects, the length property keeps itself in sync with the number of
indexed properties of the object. If you add more indexed properties
to the object, the length property increases itself automatically; if
you decrease length, it automatically deletes any indexed properties
beyond its new value.

But when we extend the Array class, instances of the subclass are not
created by new Array() or the literal [] syntax. So instances of Dir
have the [[Class]] "Object". There is even a test for this: The default
Object.prototype.toString method queries the internal [[Class]] prop-
erty of its receiver to create a generic description of an object, so you
can call it explicitly on any given object and see:

var dir = new Dir("/", [1);
Object.prototype.toString.call(dir); // "[object Object]"
Object.prototype.toString.call([]1); // "[object Array]"

As aresult, instances of Dir do not inherit the expected special behav-
ior of the length property of arrays.

108 Chapter 4 Objects and Prototypes

Table 4.1 Values of the [[Class]] Internal Property, As Defined by
ECMAScript

[[Class]] Construction

"Array" new Array(...), [...]

"Boolean" new Boolean(...)

"Date" new Date(...)

"Error" new Error(...), new EvalError(...), new RangeError(...),

new ReferenceError(...), new SyntaxError(...),
new TypeError(...), new URIError(...)

"Function” new Function(...), function(...) {...}
"JSON" JSON

"Math" Math

"Number" new Number(...)

"Object" new Object(...), {...}, new MyClass(...)
"RegExp" new RegExp(...), /.../

"String" new String(...)

A better implementation defines an instance property with the array
of entries:

function Dir(path, entries) {
this.path = path;
this.entries = entries; // array property

}

Array methods can be redefined on the prototype by delegating to the
corresponding methods of the entries property:

Dir.prototype.forEach = function(f, thisArg) {
if (typeof thisArg === "undefined") {
thisArg = this;
}
this.entries.forEach(f, thisArg);
1

Most of the constructors of the ECMAScript standard library have
similar problems, where certain properties or methods expect the
right [[Class]] or other special internal properties that subclasses
cannot provide. For this reason it’s advisable to avoid inheriting from

Item 41: Treat Prototypes As an Implementation Detail 109

any of the following standard classes: Array, Boolean, Date, Function,
Number, RegExp, or String.

Things to Remember

+ Inheriting from standard classes tends to break due to special
internal properties such as [[Class]].

+ Prefer delegating to properties instead of inheriting from standard
classes.

Item 41: Treat Prototypes As an Implementation Detail

An object provides a small, simple, and powerful set of operations to
its consumers. The most basic interactions a consumer has with an
object are getting its property values and calling its methods. These
operations do not particularly care where in a prototype hierarchy the
properties are stored. The implementation of an object may evolve over
time to implement a property in different places on the object’s pro-
totype chain, but as long as its value remains consistent, these basic
operations behave the same. Put simply: Prototypes are an implemen-
tation detail of an object’s behavior.

At the same time, JavaScript provides convenient introspection mech-
anisms for inspecting the details of an object. The Object.prototype
.hasOwnProperty method determines whether a property is stored
directly as an “own” property (i.e., an instance property) of an object,
ignoring the prototype hierarchy completely. The Object.getPrototypeOf
and __proto__ facilities (see Item 30) allow programs to traverse the
prototype chain of an object and look at its prototype objects individu-
ally. These are powerful and sometimes useful features.

But a good programmer knows when to respect abstraction bound-
aries. Inspecting implementation details—even without modifying
them—creates a dependency between components of a program. If the
producer of an object changes its implementation details, the con-
sumer that depends on them will break. These kinds of bugs can be
especially difficult to diagnose because they constitute action at a dis-
tance: One author changes the implementation of one component, and
another component (often written by a different programmer) breaks.

Similarly, JavaScript does not distinguish between public and private
properties of an object (see Item 35). Instead, it’s your responsibility to
rely on documentation and discipline. If a library provides an object
with properties that are undocumented or specifically documented as
internal, chances are good that those properties are best left alone by
consumers.

110 Chapter 4 Objects and Prototypes

Things to Remember
+ Objects are interfaces; prototypes are implementations.
+ Avoid inspecting the prototype structure of objects you don’t control.

+ Avoid inspecting properties that implement the internals of objects
you don’t control.

Item 42: Avoid Reckless Monkey-Patching

Having inveighed against violating abstractions in Item 41, let’s
now consider the ultimate violation. Since prototypes are shared as
objects, anyone can add, remove, or modify their properties. This con-
troversial practice is commonly known as monkey-patching.

The appeal of monkey-patching lies in its power. Are arrays missing a
useful method? Just add it yourself:

Array.prototype.split = function(i) { // alternative #1
return [this.slice(0, i), this.slice(i)];

s
Voila: Every array instance has a split method.

But problems arise when multiple libraries monkey-patch the same
prototypes in incompatible ways. Another library might monkey-patch
Array.prototype with a method of the same name:

Array.prototype.split = function() { // alternative #2
var i = Math.floor(this.length / 2);
return [this.slice(0, i), this.slice(i)];

};

Any uses of split on an array now have roughly a 50% chance of
being broken, depending on which of the two methods they expect.

At the very least, any library that modifies shared prototypes such
as Array.prototype should clearly document that it does so. This at
least gives clients adequate warning about potential conflicts between
libraries. Nevertheless, two libraries that monkey-patch prototypes in
conflicting ways cannot be used within the same program. One alter-
native is that if a library only monkey-patches prototypes as a conve-
nience, it may provide the modifications in a function that users can
choose to call or ignore:

function addArrayMethods() {
Array.prototype.split = function(i) {
return [this.slice(0, i), this.slice(i)];
};
};

Item 42: Avoid Reckless Monkey-Patching 111

Of course, this approach only works if the library providing
addArrayMethods does not actually depend on Array.prototype.split.

Despite the hazards, there is one particularly reliable and invalu-
able use of monkey-patching: the polyfill. JavaScript programs and
libraries are frequently deployed on multiple platforms, such as the
different versions of web browsers made by different vendors. These
platforms can differ in how many standard APIs they implement. For
example, ES5 defines new Array methods such as forEach, map, and
filter, and some versions of browsers may not support these meth-
ods. The behavior of the missing methods is defined by a widely sup-
ported standard, and many programs and libraries may depend on
these methods. Since their behavior is standardized, providing imple-
mentations for these methods does not pose the same risk of incom-
patibility between libraries. In fact, multiple libraries can provide
implementations for the same standard methods (assuming they are
all correctly implemented), since they all implement the same stan-
dard API.

You can safely fill in these platform gaps by guarding monkey-patches
with a test:

if (typeof Array.prototype.map !== "function") {
Array.prototype.map = function(f, thisArg) {
var result = [];
for (var i = 0, n = this.length; i < n; i++) {
result[i] = f.call(thisArg, this[i], 1i);
}
return result;
};
}

Testing for the presence of Array.prototype.map ensures that a built-in
implementation, which is likely to be more efficient and better tested,
won't be overwritten.

Things to Remember

+ Avoid reckless monkey-patching.

+ Document any monkey-patching performed by a library.

+ Consider making monkey-patching optional by performing the mod-
ifications in an exported function.

+ Use monkey-patching to provide polyfills for missing standard APIs.

This page intentionally left blank

Arrays and
Dictionaries

Objects are JavaScript’s most versatile data structure. Depending on
the situation, an object can represent a fixed record of name-value
associations, an object-oriented data abstraction with inherited meth-
ods, a dense or sparse array, or a hash table. Naturally, mastering
such a multipurpose tool demands different idioms for different needs.
In the preceding chapter we studied the use of structured objects and
inheritance. This chapter tackles the use of objects as collections:
aggregate data structures with varying numbers of elements.

Item 43: Build Lightweight Dictionaries from Direct
Instances of Object

At its heart, a JavaScript object is a table mapping string property
names to values. This makes objects pleasantly lightweight for imple-
menting dictionaries: variable-sized collections mapping strings to
values. JavaScript even provides a convenient construct for enumer-
ating the property names of an object, the for...in loop:

var dict = { alice: 34, bob: 24, chris: 62 };
var people = [];

for (var name 1in dict) {
people.push(name + ": " + dict[name]);

}

people; // ["alice: 34", "bob: 24", "chris: 62"]

But every object also inherits properties from its prototype object
(see Chapter 4), and the for...in loop enumerates an object’s inher-
ited properties as well as its “own” properties. For example, what hap-
pens if we create a custom dictionary class that stores its elements as
properties of the dictionary object itself?

114 Chapter 5 Arrays and Dictionaries

function NaiveDict() { }

NaiveDict.prototype.count = function() {
var i = 0;
for (var name 1in this) { // counts every property
4+
}
return 1i;

1

NaiveDict.prototype.toString = function() {
return "[object NaiveDict]";

3
var dict = new NaiveDict(Q);
dict.alice

dict.bob = 24;
dict.chris = 62;

34;

dict.count(Q); // 5

The problem is that we are using the same object to store both the
fixed properties of the NaiveDict data structure (count, toString) and
the variable entries of the specific dictionary (alice, bob, chris). So
when count enumerates the properties of a dictionary, it counts all
of these properties (count, toString, alice, bob, chris) instead of just
the entries we care about. See Item 45 for an improved Dict class that
does not store its elements as instance properties, instead provid-
ing dict.get(key) and dict.set(key, value) methods. In this Item we
focus on the pattern of using object properties as dictionary elements.

A similar mistake is to use the Array type to represent dictionaries.
This is an especially easy trap to fall into for programmers famil-
iar with languages such as Perl and PHP, where dictionaries are
commonly called “associative arrays.” Deceptively, since we can add
properties to any type of JavaScript object this usage pattern will
sometimes appear to work:

var dict = new Array(Q);
dict.alice = 34;
dict.bob = 24;
dict.chris = 62;

dict.bob; // 24

Item 43: Build Lightweight Dictionaries from Direct Instances of Object 115

Unfortunately, this code is vulnerable to prototype pollution, where
properties on a prototype object can cause unexpected properties to
appear when enumerating dictionary entries. For example, another
library in the application may decide to add some convenience meth-
ods to Array.prototype:

Array.prototype.first = function() {
return this[0];
}s

Array.prototype.last = function() {
return this[this.length - 1];

1

Now see what happens when we attempt to enumerate the elements of
our array:

var names = [];

for (var name 1in dict) {
names.push(name) ;

}

names; // ["alice", "bob", "chris", "first", "last"]

This brings us to the primary rule of using objects as lightweight
dictionaries: Only use direct instances of Object as dictionaries—not
subclasses such as NaiveDict, and certainly not arrays. For example,
we can simply replace new Array() above with new Object() or even
an empty object literal. The result is much less susceptible to proto-
type pollution:

var dict = {};
dict.alice

dict.bob = 24;
dict.chris = 62;

34;

var names = [];

for (var name 1in dict) {
names.push(name) ;

}

names; // ["alice"”, "bob", "chris"]

Now, our new version is still not guaranteed to be safe from pollution.
Anyone could still come along and add properties to Object.prototype,

116 Chapter 5 Arrays and Dictionaries

and we'd be stuck again. But by using a direct instance of Object, we
localize the risk to Object.prototype alone.

So how is this solution any better? For one, as Item 47 explains,
nobody should ever add properties to Object.prototype that could
pollute a for...in loop. By contrast, it's not unreasonable to add prop-
erties to Array.prototype. For example, Item 42 explains how to add
standard methods to Array.prototype in environments that don't pro-
vide them. These properties end up polluting for...in loops. Similarly,
a user-defined class will typically have properties on its prototype.
Sticking to direct instances of Object (and always observing the rule
of Item 47) keeps your for...in loops free of pollution.

But beware! As Items 44 and 45 attest, this rule is necessary but
not sufficient for building well-behaved dictionaries. As convenient as
lightweight dictionaries are, they suffer from a number of hazards.
It’s important to study all three of these Items—or, if you prefer not to
memorize the rules, use an abstraction like the Dict class of Item 45.

Things to Remember
+ Use object literals to construct lightweight dictionaries.

+ Lightweight dictionaries should be direct descendants of
Object.prototype to protect against prototype pollution in for...in
loops.

Item 44: Use null Prototypes to Prevent Prototype
Pollution

One of the easiest ways to avoid prototype pollution is to just make it
impossible in the first place. But before ES5, there was no standard
way to create a new object with an empty prototype. You might be
tempted to try setting a constructor’s prototype property to null or
undefined:

function CO) { }
C.prototype = null;

But instantiating this constructor still results in instances of Object:

var o = nhew CQ;
Object.getPrototypeOf(o) === null; // false
Object.getPrototypeOf(o) === Object.prototype; // true

ES5 offers the first standard way to create an object with no pro-
totype. The Object.create function is capable of dynamically con-
structing objects with a user-specified prototype link and a property

Item 44: Use null Prototypes to Prevent Prototype Pollution 117

descriptor map, which describes the values and attributes of the new
object’s properties. By simply passing a null prototype argument and
an empty descriptor map, we can build a truly empty object:

var x = Object.create(null);
Object.getPrototype0f(o) === null; // true

No amount of prototype pollution can affect the behavior of such an
object.

Older JavaScript environments that do not support Object.create
may support one other approach worth mentioning. In many envi-
ronments, the special property __proto__ (see Items 31 and 32) pro-
vides magic read and write access to the internal prototype link of an
object. The object literal syntax also supports initializing the proto-
type link of a new object to null:

var x = { _ _proto__: null };
x instanceof Object; // false (non-standard)

This syntax is equally convenient, but where Object.create is avail-
able, it is the more reliable approach. The __proto__ property is
nonstandard and not all uses of it are portable. JavaScript implemen-
tations are not guaranteed to support it in the future, so you should
stick to the standard Object.create where possible.

Sadly, while the nonstandard __proto__ can be used to solve some
problems, it also causes an additional problem of its own, prevent-
ing prototype-free objects from being a truly robust implementation of
dictionaries. Item 45 describes how in some JavaScript environments,
the property key "__proto__" itself pollutes objects even when they
have no prototype. If you can't be sure that the string "__proto__" will
never be used as a key in your dictionary, you should consider using
the more robust Dict class described in Item 45.

Things to Remember

+In ES5, use Object.create(null) to create prototype-free empty
objects that are less susceptible to pollution.

+ In older environments, consider using { __proto__: null }.

+ But beware that __proto__ is neither standard nor entirely portable
and may be removed in future JavaScript environments.

+ Never use the name "__proto__" as a dictionary key since some
environments treat this property specially.

118 Chapter 5 Arrays and Dictionaries

Item 45: Use hasOwnProperty to Protect Against
Prototype Pollution

Items 43 and 44 talk about property enumeration, but we haven't
addressed the issue of prototype pollution in property lookup. It's
tempting to use JavaScript’s native syntax for object manipulation for
all of our dictionary operations:

"alice" 1in dict; // membership test
dict.alice; // retrieval
dict.alice = 24; // update

But remember that JavaScript's object operations always work with
inheritance. Even an empty object literal inherits a number of proper-
ties from Object.prototype:

var dict = {};

"alice" 1in dict; // false
"bob" 1in dict; // false
"chris" 1in dict; // false
"toString" 1in dict; // true
"valueOf" 1in dict; // true

Luckily, Object.prototype provides the hasOwnProperty method, which
is just the tool we need to avoid prototype pollution when testing for
dictionary entries:

dict.hasOwnProperty("alice"); // false
dict.hasOwnProperty("toString"); // false
dict.hasOwnProperty("valueOf"); // false

Similarly, we can protect property lookups against pollution by guard-
ing the lookup with a test:

dict.hasOwnProperty("alice") ? dict.alice : undefined;
dict.hasOwnProperty(x) ? dict[x] : undefined;

Unfortunately, we aren’t quite done. When we call dict.hasOwnProperty,
we're asking to look up the hasOwnProperty method of dict. Normally
this would simply be inherited from Object.prototype. But if we store
an entry in the dictionary under the name "hasOwnProperty", the pro-
totype’s method is no longer accessible:

dict.hasOwnProperty = 10;
dict.hasOwnProperty("alice");
// error: dict.hasOwnProperty is not a function

You might be thinking that a dictionary would never store an entry
with a name as exotic as "hasOwnProperty". And of course, it’s up to

Item 45: Use hasOwnProperty to Protect Against Prototype Pollution 119

you in the context of any given program to decide that this isn’t a sce-
nario you ever expect to happen. But it certainly can happen, espe-
cially if you're filling the dictionary with entries from an external file,
network resource, or user interface input, where third parties beyond
your control get to decide what keys end up in the dictionary.

The safest approach is to make no assumptions. Instead of calling
hasOwnProperty as a method of the dictionary, we can use the call
method described in Item 20. First we extract the hasOwnProperty
method in advance from any well-known location:

var hasOwn = Object.prototype.hasOwnProperty;
Or more concisely:
var hasOwn = {}.hasOwnProperty;

Now that we have a local variable bound to the proper function, we
can call it on any object by using the function’s call method:

hasOwn.call(dict, "alice");

This approach works regardless of whether its receiver has overridden
its hasOwnProperty method:

var dict = {};

dict.alice = 24;
hasOwn.call(dict, "hasOwnProperty"); // false
hasOwn.call(dict, "alice"); // true

dict.hasOwnProperty = 10;
hasOwn.call(dict, "hasOwnProperty"); // true
hasOwn.call(dict, "alice"); // true

To avoid inserting this boilerplate everywhere we do a lookup, we can
abstract out this pattern into a Dict constructor that encapsulates all
of the techniques for writing robust dictionaries in a single datatype
definition:

function Dict(elements) {

// allow an optional initial table

this.elements = elements || {}; // simple Object
}

Dict.prototype.has = function(key) {
// own property only
return {}.hasOwnProperty.call(this.elements, key);

1

120 Chapter 5 Arrays and Dictionaries

Dict.prototype.get = function(key) {
// own property only
return this.has(key)
? this.elements[key]
: undefined;

};

Dict.prototype.set = function(key, val) {
this.elements[key] = val;

1

Dict.prototype.remove = function(key) {
delete this.elements[key];
3

Notice that we don’t protect the implementation of Dict.prototype.set,
since adding the key to the dictionary object becomes one of the
elements object’s own properties, even if there is a property of the
same name in Object.prototype.

This abstraction is more robust than using JavaScript’'s default object
syntax and almost as convenient to use:

var dict = new Dict({

alice: 34,
bob: 24,
chris: 62

D;

dict.has("alice"); // true
dict.get("bob™); // 24
dict.has("valueOf"); // false

Recall from Item 44 that in some JavaScript environments, the special
property name __proto__ can cause pollution problems of its own. In
some environments, the __proto__ property is simply inherited from
Object.prototype, so empty objects are (mercifully) truly empty:

var empty = Object.create(null);
"__proto__" 1in empty;
// false (in some environments)

var hasOwn = {}.hasOwnProperty;
hasOwn.call(empty, "_ proto__");
// false (in some environments)

Item 45: Use hasOwnProperty to Protect Against Prototype Pollution 121

In others, only the in operator reports true:

var empty = Object.create(null);
"__proto__ " 1in empty; // true (in some environments)

var hasOwn = {}.hasOwnProperty;
hasOwn.call(empty, "_ proto_"); // false (in some
environments)

But unfortunately, some environments permanently pollute all objects
with the appearance of an instance property called __proto__:

var empty = Object.create(null);
"__proto_ " 1in empty; // true (in some environments)

var hasOwn = {}.hasOwnProperty;
hasOwn.call(empty, "__proto_"); // true (in some environments)

This means that depending on the environment, the following code
could have different results:

var dict = new Dict();
dict.has("__proto_"); // ?

For maximum portability and safety, this leaves us with no choice
but to add a special case for the "__proto__" key to each of the Dict
methods, resulting in the following more complex but safer final
implementation:

function Dict(elements) {
// allow an optional initial table

this.elements = elements || {}; // simple Object
this.hasSpecialProto = false; // has "__proto__" key?
this.specialProto = undefined; // " __proto__" element

}

Dict.prototype.has = function(key) {
if (key === "__proto__") {
return this.hasSpecialProto;
}
// own property only
return {}.hasOwnProperty.call(this.elements, key);

1

Dict.prototype.get = function(key) {
if (key === "_ proto__ ") {
return this.specialProto;

}

122 Chapter 5 Arrays and Dictionaries

// own property only
return this.has(key)
? this.elements[key]
: undefined;

};

Dict.prototype.set = function(key, val) {
if (key === "_ proto_ ") {
this.hasSpecialProto = true;
this.specialProto = val;
} else {
this.elements[key] = val;
}
};

Dict.prototype.remove = function(key) {
if (key === "__proto__") {
this.hasSpecialProto = false;
this.specialProto = undefined;
} else {
delete this.elements[key];
}
};

This implementation is guaranteed to work regardless of an environ-
ment’s handling of __proto__, since it avoids ever dealing with prop-
erties of that name:

)

var dict = new Dict();
dict.has("__proto__"); // false

Things to Remember
+ Use hasOwnProperty to protect against prototype pollution.

+ Use lexical scope and call to protect against overriding of the
hasOwnProperty method.

+ Consider implementing dictionary operations in a class that encap-
sulates the boilerplate hasOwnProperty tests.

1]

+ Use a dictionary class to protect against the use of "__proto__" as
a key.

Item 46: Prefer Arrays to Dictionaries for Ordered Collections 123

Item 46: Prefer Arrays to Dictionaries for Ordered
Collections

Intuitively, a JavaScript object is an unordered collection of proper-
ties. Getting and setting different properties should work in any order,
producing the same results and roughly the same efficiency. The
ECMAScript standard does not specify any particular order of prop-
erty storage and is even largely mum on the subject of enumeration.

But here’s the catch: A for...in loop has to pick some order to enu-
merate an object’s properties. And since the standard allows Java-
Script engines the freedom to choose an order, their choice can subtly
change your program’s behavior. A common mistake is to provide an
API that requires an object representing an ordered mapping from
strings to values, such as for creating an ordered report:

function report(highScores) {

nn

var result = ;

var i = 1;
for (var name 1in highScores) { // unpredictable order
result += i + ". " + name + ": " +
highScores[name] + "\n";
i++;
}

return result;

}

report([{ name: "Hank", points: 1110100 },
{ name: "Steve", points: 1064500 },
{ name: "Billy", points: 1050200 }1);
/7?7

Because different environments may choose to store and enumer-
ate the properties of the object in different orders, this function can
result in different strings, potentially jumbling the order of the “high
scores” report.

Keep in mind that it may not always be obvious whether your pro-
gram depends on the order of object enumeration. If you don't test
your program in multiple JavaScript environments, you may not even
notice that its behavior can change based on the exact ordering of a
for...in loop.

If you need to depend on the order of entries in a data structure, use
an array instead of a dictionary. The report function above would

124 Chapter 5 Arrays and Dictionaries

work completely predictably in any JavaScript environment if its API
expected an array of objects instead of a single object:

function report(highScores) {
var result = "";
for (var i = 0, n = highScores.length; i < n; i++) {
var score = highScores[i];

n "

result += (i + 1) + ". +
score.name + ": " + score.points + "\n";
}

return result;

}

report([{ name: "Hank", points: 1110100 },
{ name: "Steve", points: 1064500 },
{ name: "Billy", points: 1050200 }1);
// "1. Hank: 1110100\n2. Steve: 1064500\n3. Billy: 1050200\n"

By accepting an array of objects, each with a name and points prop-
erty, this version predictably iterates over the elements in a precise
order: from O to highScores.length — 1.

A terrific source of subtle order dependencies is floating-point arith-
metic. Consider a dictionary of films that maps titles to ratings:

var ratings = {
"Good Will Hunting": 0.8,
"Mystic River": 0.7,
"21": 0.6,
"Doubt": 0.9

};

As we saw in Item 2, rounding in floating-point arithmetic can lead to
subtle dependencies on the order of operations. When combined with
undefined order of enumeration, this can lead to some unpredictable
loops:

var total = 0, count = 0;

for (var key 1in ratings) { // unpredictable order
total += ratings[key];
count++;

}

total /= count;

total; // 7

As it turns out, popular JavaScript environments do in fact per-
form this loop in different orders. For example, some environments

Item 47: Never Add Enumerable Properties to Object.prototype 125

enumerate object keys in the order in which they are added to the
object, effectively computing:

(0.8 + 0.7 +0.6+0.9 /4 // 0.75

Others always enumerate potential array indices first before any
other keys. Since the movie 21 happens to have a name that is a via-
ble array index, it gets enumerated first, resulting in:

(0.6 + 0.8 + 0.7 +0.9) / 4 // 0.7499999999999999

In this case, a better representation is to use integer values in the
dictionary, since integer addition can be performed in any order. This
way, the sensitive division operations are performed only at the very
end—crucially, after the loop is complete:

@+7+6+9 /4/ 10 // 0.75
6 +8+7+9 /4/ 10 // 0.75

In general, you should always take care when executing a for...in loop
that the operations you perform behave the same regardless of their
order.

Things to Remember

+ Avoid relying on the order in which for...in loops enumerate object
properties.

+ If you aggregate data in a dictionary, make sure the aggregate oper-
ations are order-insensitive.

+ Use arrays instead of dictionary objects for ordered collections.

Item 47: Never Add Enumerable Properties to
Object.prototype

The for...in loop is awfully convenient, but as we saw in Item 43 it
is susceptible to prototype pollution. Now, the most common use of
for...in by far is enumerating the elements of a dictionary. The impli-
cation is unavoidable: If you want to permit the use of for...in on
dictionary objects, never add enumerable properties to the shared
Object.prototype.

This rule may come as a great disappointment: What could be more
powerful than adding convenience methods to Object.prototype that
suddenly all objects can share? For example, what if we added an
allKeys method that produces an array of an object’s property names?

126 Chapter 5 Arrays and Dictionaries

Object.prototype.allKeys = function() {
var result = [];
for (var key 1in this) {
result.push(key);
}
return result;

1
Sadly, this method pollutes even its own result:
({a: 1, b: 2, c: 3 P.allKkeysQ; // ["allKeys", "a", "b", "c"]

Of course, we could always improve our allKeys method to ignore
properties of Object.prototype. But with freedom comes responsibil-
ity, and our actions on a highly shared prototype object have conse-
quences on everyone who uses that object. Just by adding one single
property to Object.prototype, we force everyone everywhere to protect
his for...in loops.

It is slightly less convenient, but ultimately much more cooperative, to
define allKeys as a function rather than as a method.

function allKeys(obj) {
var result = [];
for (var key 1in obj) {
result.push(key);
}
return result;

}

But if you do want to add properties to Object.prototype, ES5 provides a
mechanism for doing it more cooperatively. The Object.defineProperty
method makes it possible to define an object property simultaneously
with metadata about the property’s attributes. For example, we can
define the above property exactly as before but make it invisible to
for...in by setting its enumerable attribute to false:

Object.defineProperty(Object.prototype, "allKeys", {
value: function() {
var result = [];
for (var key 1in this) {
result.push(key);
b
return result;

}1

writable: true,

Item 48: Avoid Modifying an Object during Enumeration 127

enumerable: false,
configurable: true

s

Admittedly, this code is a mouthful. But this version has the distinct
advantage of not polluting every other for...in loop over every other
instance of Object.

In fact, it’s worth using this technique for other objects as well. When-
ever you need to add a property that should not be visible to for...in
loops, Object.defineProperty is your friend.

Things to Remember
+ Avoid adding properties to Object.prototype.
+ Consider writing a function instead of an Object.prototype method.

+If you do add properties to Object.prototype, use ES5’s
Object.defineProperty to define them as nonenumerable properties.

Item 48: Avoid Modifying an Object during
Enumeration

A social network has a set of members and, for each member, a regis-
tered list of friends:

function Member(name) {
this.name = name;
this.friends = [];

var a = new Member("Alice"),
= new Member("Bob"),
= new Member("Carol"),
= new Member("Dieter"),
= new Member("ETi"),
= new Member("Fatima");

-~ QO N T

a.friends.push(b);
b.friends.push(c);
c.friends.push(e);
d.friends.push(b);
e.friends.push(d, f);

Searching that network means traversing the social network graph
(see Figure 5.1). This is often implemented with a work-set, which

128 Chapter 5 Arrays and Dictionaries

t(:)n

Figure 5.1 A social network graph

starts with a single root node, and has nodes added as they are dis-
covered and removed as they are visited. It may be tempting to try to
implement this traversal with a single for...in loop:

Member.prototype.inNetwork = function(other) {
var visited = {};
var workset = {};

workset[this.name] = this;

for (var name 1in workset) {
var member = workset[name];

delete workset[name]; // modified while enumerating

if (name 1in visited) { // don't revisit members
continue;

3

visited[name] = member;

if (member === other) { // found?
return true;

}

member. friends.forEach(function(friend) {
workset[friend.name] = friend;

b

h

return false;

}s

Item 48: Avoid Modifying an Object during Enumeration 129

Unfortunately, in many JavaScript environments this code doesn’t
work at all:

a.inNetwork(f); // false

What happened? As it turns out, a for...in loop is not required to keep
current with modifications to the object being enumerated. In fact,
the ECMAScript standard leaves room for different JavaScript envi-
ronments to behave differently with respect to concurrent modifica-
tions. In particular, the standard states:

If new properties are added to the object being enumerated
during enumeration, the newly added properties are not guar-
anteed to be visited in the active enumeration.

The practical consequence of this underspecification is that we can-
not rely on for...in loops to behave predictably if we modify the object
being enumerated.

Let’s give our graph traversal another try, this time managing the
loop control ourselves. While we're at it, we should use our dictionary
abstraction to avoid prototype pollution. We can place the dictionary
in a WorkSet class that tracks the number of elements currently in the
set:

function WorkSet() {
this.entries = new Dict();
this.count = 0;

}

WorkSet.prototype.isEmpty = function() {
return this.count === 0;

1

WorkSet.prototype.add = function(key, val) {
if (this.entries.has(key)) {
return;
}
this.entries.set(key, val);
this.count++;

};

WorkSet.prototype.get = function(key) {
return this.entries.get(key);

1

WorkSet.prototype.remove = function(key) {
if (!this.entries.has(key)) {

130 Chapter 5 Arrays and Dictionaries

return;
}
this.entries.remove(key);
this.count--;

};

In order to pick an arbitrary element of the set, we need a new method
for the Dict class:

Dict.prototype.pick = function() {
for (var key 1in this.elements) {
if (this.has(key)) {
return key;
}
}
throw new Error("empty dictionary");

}s

WorkSet.prototype.pick = function() {
return this.entries.pick();

1

Now we can implement inNetwork with a simple while loop, choos-
ing arbitrary elements one at a time and removing them from the
work-set.

Member.prototype.inNetwork = function(other) {
var visited = {};
var workset = new WorkSet();
workset.add(this.name, this);
while (!'workset.isEmpty()) {
var name = workset.pick(Q);
var member = workset.get(name);
workset.remove(name);
if (name 1in visited) { // don't revisit members
continue;
}
visited[name] = member;
if (member === other) { // found?
return true;
}
member.friends.forEach(function(friend) {
workset.add(friend.name, friend);
1
}
return false;

};

Item 48: Avoid Modifying an Object during Enumeration 131

The pick method is an example of nondeterminism: an operation that
is not guaranteed by the language semantics to produce a single, pre-
dictable result. This nondeterminism comes from the fact that the
for...in loop may choose a different order of enumeration in different
JavaScript environments (or even in different executions within the
same JavaScript environment, at least in principle). Working with
nondeterminism can be tricky, because it introduces an element of
unpredictability into your program. Tests that pass on one platform
may fail on others or even fail intermittently on the same platform.

Some sources of nondeterminism are unavoidable. A random num-
ber generator is supposed to produce unpredictable results; checking
the current date and time always gets a different answer; respond-
ing to user actions such as mouse clicks or keystrokes necessarily
behaves differently depending on the user. But it’s a good idea to be
clear about what parts of a program have a single expected result and
which parts can vary.

For these reasons, it's worth considering using a deterministic alter-
native to a work-set algorithm: a work-list algorithm. By storing work
items in an array instead of a set, the inNetwork method always tra-
verses the graph in exactly the same order.

Member.prototype.inNetwork = function(other) {
var visited = {};
var worklist = [this];
while (worklist.length > 0) {
var member = worklist.pop(Q);
if (member.name 1in visited) { // don't revisit

continue;
b
visited[member.name] = member;
if (member === other) { // found?
return true;
}
member. friends.forEach(function(friend) {
workTist.push(friend); // add to work-Tist
9K

}

return false;
3

This version of inNetwork adds and removes work items deterministi-
cally. Since the method always returns true for connected members
no matter what path it finds, the end result is the same. But this may
not be the case for other methods you might care to write, such as a

132 Chapter 5 Arrays and Dictionaries

variation on inNetwork that produces the actual path found through
the graph from member to member.

Things to Remember

+ Make sure not to modify an object while enumerating its properties
with a for...in loop.

+ Use a while loop or classic for loop instead of a for...in loop when
iterating over an object whose contents might change during the
loop.

+ For predictable enumeration over a changing data structure, con-
sider using a sequential data structure such as an array instead of
a dictionary object.

Item 49: Prefer for Loops to for...in Loops for Array
Iteration

What is the value of mean in this code?

var scores = [98, 74, 85, 77, 93, 100, 89];
var total = 0;
for (var score in scores) {
total += score;
}
var mean = total / scores.length;
mean; // ?

Did you spot the bug? If you said the answer was 88, you understood
the intention of the program but not its actual result. This program
commits the all-too-easy mistake of confusing the keys and values
of an array of numbers. A for...in loop always enumerates the keys.
A plausible next guess would be (0 + 1 + ... + 6) / 7 = 21, but even
that is incorrect. Remember that object property keys are always
strings, even the indexed properties of an array. So the += operation
ends up performing string concatenation, resulting in an unintended
total of "00123456". The end result? An implausible mean value of
17636.571428571428.

The proper way to iterate over the contents of an array is to use a
classic for loop.

var scores = [98, 74, 85, 77, 93, 100, 89];

var total = 0;

for (var i = 0, n = scores.length; i < n; i++) {
total += scores[i];

}

Item 50: Prefer Iteration Methods to Loops 133

var mean = total / scores.length;
mean; // 88

This approach ensures that you have integer indices when you need
them and array element values when you need them, and that you
never confuse the two or trigger unexpected coercions to strings.
Moreover, it ensures that the iteration occurs in the proper order
and does not accidentally include noninteger properties stored on the
array object or in its prototype chain.

Notice the use of the array length variable n in the for loop above. If
the loop body does not modify the array, the loop behavior is identical
to simply recalculating the array length on every iteration:

for (var i = 0; i < scores.length; i++) { ... }

Still, there are a couple of small benefits to computing the array
length once ahead of the loop. First, even optimizing JavaScript com-
pilers may sometimes find it difficult to prove that it is safe to avoid
recomputing scores.length. But more importantly, it communicates
to the person reading the code that the loop’s termination condition is
simple and fixed.

Things to Remember

= Always use a for loop rather than a for...in loop for iterating over
the indexed properties of an array.

= Consider storing the length property of an array in a local vari-
able before a loop to avoid recomputing the property lookup.

Item 50: Prefer Iteration Methods to Loops

Good programmers hate writing the same code twice. Copying and
pasting boilerplate code duplicates bugs, makes programs harder to
change, clutters up programs with repetitive patterns, and leaves pro-
grammers endlessly reinventing the wheel. Perhaps worst of all, rep-
etition makes it too easy for someone reading a program to overlook
minor differences from one instance of a pattern to another.

JavaScript’'s for loops are reasonably concise and certainly familiar
from many other languages such as C, Java, and C#, but they allow
for quite different behavior with only slight syntactic variation. Some
of the most notorious bugs in programming result from simple mis-
takes in determining the termination condition of a loop:

for (var i = 0; i <=n; i++) { ... }
// extra end iteration
for (var i = 1; i <n; i++) { ... }

// missing first iteration

134 Chapter 5 Arrays and Dictionaries

for (var i = n; i >=0; i--) { ... }
// extra start iteration
for (var i =n -1; i >0; i--) { ... }

// missing last iteration

Let’s face it: Figuring out termination conditions is a drag. It's boring
and there are just too many little ways to mess up.

Thankfully, JavaScript’s closures (see Item 11) are a convenient and
expressive way to build iteration abstractions for these patterns that
save us from having to copy and paste loop headers.

ES5 provides convenience methods for some of the most common
patterns. Array.prototype.forEach is the simplest of these. Instead of
writing:

for (var i = 0, n = players.length; i < n; i++) {
players[i].score++;
3

we can write:

players.forEach(function(p) {
p.score++;

b;

This code is not only more concise and readable, but it also eliminates
the termination condition and any mention of array indices.

Another common pattern is to build a new array by doing something
to each element of another array. We could do this with a loop:

var trimmed = [];

for (var i = 0, n = input.length; i < n; i++) {
trimmed.push(Cinput[i].trim());

}

Alternatively, we could do this with forEach:

var trimmed = [];
input.forEach(function(s) {

trimmed.push(s.trim());
B;

But this pattern of building a new array from an existing array is so
common that ES5 introduced Array.prototype.map to make it simpler
and more elegant:

var trimmed = input.map(function(s) {
return s.trimQ;

b;

Item 50: Prefer Iteration Methods to Loops 135

Another common pattern is to compute a new array containing only
some of the elements of an existing array. Array.prototype.filter
makes this straightforward: It takes a predicate—a function that pro-
duces a truthy value if the element should be kept in the new array,
and a falsy value if the element should be dropped. For example, we
can extract from a price list only those listings that fall within a par-
ticular price range:

Tistings.filter(function(listing) {
return Tisting.price >= min & Tisting.price <= max;

b;

Of course, these are just methods available by default in ES5. There’s
nothing stopping us from defining our own iteration abstractions. For
example, one pattern that sometimes comes up is extracting the lon-
gest prefix of an array that satisfies a predicate:

function takewWhile(a, pred) {
var result = [];
for (var i = 0, n = a.length; i < n; i++) {
if (lpred(ali]l, 1)) {
break;
}
result[i] = a[i];
}
return result;

}

var prefix = takewWhile([1l, 2, 4, 8, 16, 32], function(n) {
return n < 10;

s /01, 2, 4, 8]

Notice that we pass the array index i to pred, which it can choose to
use or ignore. In fact, all of the iteration functions in the standard
library, including forEach, map, and filter, pass the array index to the
user-provided function.

We could also define takewhile as a method by adding it to
Array.prototype (see Item 42 for a discussion of the consequences of
monkey-patching standard prototypes like Array.prototype):

Array.prototype.takeWhile = function(pred) {
var result = [];
for (var i = 0, n = this.length; i < n; i++) {
if (pred(this[i], 1)) {
break;

}

136 Chapter 5 Arrays and Dictionaries

result[i] = this[i];
}
return result;

};

var prefix = [1, 2, 4, 8, 16, 32].takeWhile(function(n) {
return n < 10;

s /01, 2, 4, 8]

There is one thing that loops tend to do better than iteration func-
tions: abnormal control flow operations such as break and continue.
For example, it would be awkward to attempt to implement takeWhile
using forEach:

function takewWhile(a, pred) {
var result = [];
a.forEach(function(x, i) {
if (lpred(x)) {
/77
3
result[i] = x;
1
return result;

}

We could use an internal exception to implement the early termina-
tion of the loop, but this would be awkward and likely inefficient:

function takewWhile(a, pred) {
var result = [];
var earlykExit = {}; // unique value signaling Toop break
try {
a.forEach(function(x, i) {
if (lpred(x)) {
throw earlyExit;

}
result[i] = Xx;
9K
} catch (e) {
if (e !== earlyExit) { // only catch earlyExit
throw e;
3

}

return result;

Item 50: Prefer Iteration Methods to Loops 137

Once an abstraction becomes more verbose than the code it is replac-
ing, it's a pretty sure sign that the cure is worse than the disease.

Alternatively, the ES5 array methods some and every can be used as
loops that may terminate early. Arguably, these methods were not
created for this purpose; they are described as predicates, applying a
callback predicate repeatedly to each element of an array. Specifically,
the some method returns a boolean indicating whether its callback
returns a truthy value for any one of the array elements:

[1, 10, 100].some(function(x) { return x > 5; }); // true
[1, 10, 100].some(function(x) { return x < 0; }); // false

Analogously, every returns a boolean indicating whether its callback
returns a truthy value for all of the elements:

[1, 2, 3, 4, 5].every(function(x) { return x > 0; }); // true
[1, 2, 3, 4, 5].every(function(x) { return x < 3; 3}); // false

Both methods are shortcircuiting: If the callback to some ever pro-
duces a truthy value, some returns without processing any more ele-
ments; similarly, every returns immediately if its callback produces a
falsy value.

This behavior makes these methods useful as a variant of forEach
that can terminate early. For example, we can implement takeWhile
with every:

function takewWhile(a, pred) {
var result = [];
a.every(function(x, i) {
if (lpred(x)) {
return false; // break
3
result[i] = x;
return true; // continue
1
return result;

}

Things to Remember

+ Use iteration methods such as Array.prototype.forEach and
Array.prototype.map in place of for loops to make code more read-
able and avoid duplicating loop control logic.

+ Use custom iteration functions to abstract common loop patterns
that are not provided by the standard library:.

138 Chapter 5 Arrays and Dictionaries

+ Traditional loops can still be appropriate in cases where early exit
is necessary; alternatively, the some and every methods can be used
for early exit.

Item 51: Reuse Generic Array Methods on Array-Like
Objects

The standard methods of Array.prototype were designed to be reus-
able as methods of other objects—even objects that do not inherit
from Array. As it turns out, a number of such array-like objects crop
up in various places in JavaScript.

A good example is a function’s arguments object, described in Item
22. Unfortunately, the arguments object does not inherit from
Array.prototype, so we cannot simply call arguments.forEach to iter-
ate over each argument. Instead, we have to extract a reference to the
forEach method object and use its call method (see Item 20):

function highlight() {
[1.forEach.call(arguments, function(widget) {
widget.setBackground("yellow");
s
}

The forEach method is a Function object, which means it inherits
the call method from Function.prototype. This lets us call forEach
with a custom value for its internal binding of this (in our case, the
arguments object), followed by any number of arguments (in our case,
the single callback function). In other words, this code behaves just
like we want.

On the web platform, the DOM’s NodeList class is another instance of an
array-like object. Operations such as document.getElementsByTagName
that query a web page for nodes produce their search results as
NodelLists. Like the arguments object, a NodeList acts like an array but
does not inherit from Array.prototype.

So what exactly makes an object “array-like”? The basic contract of
an array object amounts to two simple rules.

= It has an integer length property in the range 0...232 - 1.

= The length property is greater than the largest index of the object.
An index is an integer in the range 0...2%2 — 2 whose string repre-
sentation is the key of a property of the object.

Item 51: Reuse Generic Array Methods on Array-Like Objects 139

This is all the behavior an object needs to implement to be compatible
with any of the methods of Array.prototype. Even a simple object lit-
eral can be used to create an array-like object:

var arraylLike = { 0: "a", 1: "b", 2: "c", Tength: 3 };

var result = Array.prototype.map.call(arraylLike, function(s) {
return s.toUpperCase();

»; // ["A", "B", "C"]

Strings act like immutable arrays, too, since they can be indexed

and their length can be accessed as a length property. So the

Array.prototype methods that do not modify their array work with

strings:

var result = Array.prototype.map.call("abc", function(s) {
return s.toUpperCase();

}); // [”A”’ "B"’ IICIIJ

Now, simulating all the behavior of a JavaScript array is trickier,

thanks to two more aspects of the behavior of arrays.

= Setting the length property to a smaller value n automatically
deletes any properties with an index greater than or equal to n.

= Adding a property with an index n that is greater than or equal
to the value of the length property automatically sets the length
property to n + 1.

The second of these rules is a particularly tall order, since it requires
monitoring the addition of indexed properties in order to update
Tength automatically. Thankfully, neither of these two rules is nec-
essary for the purpose of using Array.prototype methods, since they
all forcibly update the length property whenever they add or remove
indexed properties.

There is just one Array method that is not fully generic: the array con-
catenation method concat. This method can be called on any array-
like receiver, but it tests the [[Class]] of its arguments. If an argument
is a true array, its contents are concatenated to the result; otherwise,
the argument is added as a single element. This means, for example,
that we can’t simply concatenate an array with the contents of an
arguments object:

function namesColumn() {
return ["Names"].concat(arguments);
3
namesColumn("Alice", "Bob", "Chris");
// ["Names", { 0: "Alice", 1: "Bob", 2: "Chris" }]

140 Chapter 5 Arrays and Dictionaries

In order to convince concat to treat an array-like object as a true
array, we have to convert it ourselves. A popular and concise idiom
for doing this conversion is to call the slice method on the array-like
object:
function namesColumn() {

return ["Names"].concat([].slice.call(arguments));

}

namesColumn("Alice", "Bob", "Chris");
// ["Names", "Alice'", "Bob", "Chris"]

Things to Remember

+ Reuse generic Array methods on array-like objects by extracting
method objects and using their call method.

+ Any object can be used with generic Array methods if it has indexed
properties and an appropriate length property.

Item 52: Prefer Array Literals to the Array
Constructor

JavaScript’s elegance owes a lot to its concise literal syntax for the
most common building blocks of JavaScript programs: objects, func-
tions, and arrays. A literal is a lovely way to express an array:

var a = [1, 2, 3, 4, 5];
Now, you could use the Array constructor instead:
var a = new Array(1, 2, 3, 4, 5);

But even setting aside aesthetics, it turns out that the Array construc-
tor has some subtle issues. For one, you have to be sure that no one
has rebound the Array variable:

function f(Array) {

return new Array(l, 2, 3, 4, 5);
}
f(String); // new String(1)

You also have to be sure that no one has modified the global Array
variable:

Array = String;
new Array(l, 2, 3, 4, 5); // new String(1)

There’s one more special case to worry about. If you call the Array
constructor with a single numeric argument, it does something

Item 52: Prefer Array Literals to the Array Constructor 141

completely different: It attempts to create an array with no elements
but whose Tength property is the given argument. This means that
["hello"] and new Array("hello") behave the same, but [17] and
new Array(17) do completely different things!

These are not necessarily difficult rules to learn, but it’s clearer and
less prone to accidental bugs to use array literals, which have more
regular, consistent semantics.

Things to Remember

+ The Array constructor behaves differently if its first argument is a
number.

+ Use array literals instead of the Array constructor.

This page intentionally left blank

Library and
API Design

Every programmer is an API designer at one time or another. Maybe you
don’t have any immediate plans to write the next popular JavaScript
library. But when you program in a platform for a long enough period of
time, you build up a repertoire of solutions to common problems, and
sooner or later you start to develop reusable utilities and components.
Even if you don'’t release these as independent libraries, developing your
skills as a library writer can help you write better components.

Designing libraries is a tricky business and is as much art as sci-
ence. It's also incredibly important. APIs are a programmer’s basic
vocabulary. A well-designed API enables your users (which probably
includes yourself!) to express their programs clearly, concisely, and
unambiguously.

Item 53: Maintain Consistent Conventions

There are few decisions that affect APl consumers more pervasively
than the conventions you use for names and function signatures.
These conventions have enormous influence: They establish the
basic vocabulary and idioms of the applications that use them. Users
of your library have to learn to read and write using these idioms,
and it’s your job to make that learning process as easy as possible.
Inconsistency makes it harder to remember which conventions apply
in which situations, which leads to more time spent consulting your
library’s documentation and less time spent getting real work done.

One of the key conventions is argument order. User interface libraries,
for instance, usually have functions that accept multiple measure-
ments such as width and height. Do your users a favor and make
sure these always come in the same order. And it’s worth choosing an
order that matches other libraries—nearly all libraries accept width
first, then height:

var widget = new Widget(320, 240); // width: 320, height: 240

144 Chapter 6 Library and API Design

Unless you have a really strong reason for needing to vary from uni-
versal practice, stick with what's familiar. If your library is meant
for the web, remember that web developers routinely deal with mul-
tiple languages (HTML, CSS, and JavaScript... at a minimum). Don’t
make their lives even harder by needlessly varying from conventions
they are likely to use in their normal workflow. For example, when-
ever CSS accepts parameters describing the four sides of a rectangle,
it requires them in clockwise order starting from the top (top, right,
bottom, left). So when writing a library with an analogous API, stick
to this order. Your users will thank you. Or maybe they won't even
notice—so much the better! But you can be sure they will notice if
you deviate from standard convention.

If your API uses options objects (see Item 55), you can avoid the depen-
dence on argument order. For standard options such as width/height
measurements, you should pick a naming convention and adhere to
it religiously. If one of your function signatures looks for width and
height options and another looks for w and h, your users are in for
a lifetime of constantly checking your documentation to remember
which is used where. Similarly, if your Widget class has methods for
setting properties, make sure you use the same naming convention
for these update methods. There’s no good reason for one class to
have a setWidth method and another class to do the same thing with
a method called width.

Every good library needs thorough documentation, but a great library
treats its documentation as training wheels. Once your users get
accustomed to your library’s conventions, they should be able to do
common tasks without ever checking the documentation. Consistent
conventions can even help users guess what properties or methods
are available without looking them up at all, or discover them at the
console and guess their behavior from the names.

Things to Remember

+ Use consistent conventions for variable names and function
signatures.

+ Don’t deviate from conventions your users are likely to encounter in
other parts of their development platform.

Item 54: Treat undefined As “No Value”

The undefined value is special: Whenever JavaScript has no specific
value to provide it just produces undefined. Unassigned variables
start out with the value undefined:

Item 54: Treat undefined As “No Value” 145

var Xx;
x; // undefined

Accessing nonexistent properties from objects produces undefined:

var obj = {};
obj.x; // undefined

Returning without a value or falling off the end of a function body
produces the return value undefined:

function () {
return;

}
function g { }

QO3 // undefined
g(Q; // undefined

Function parameters that are not provided with actual arguments
have the value undefined:

function f(x) {
return Xx;

}

fO; // undefined

In each of these situations, the undefined value indicates that the
operation did not result in a specific value. Of course, there’s some-
thing a little paradoxical about a value that means “no value.
But every operation has to produce something, so JavaScript uses
undefined to fill the void (so to speak).

Treating undefined as the absence of any specific value is a conven-
tion established by the language. Using it for other purposes is a
risky proposition. For example, a library of user interface elements
might support a highlight method for changing the background color
of an element:

element.highlight(Q; // use the default color
element.highlight("yellow"); // use a custom color

What if we wanted to provide a way to request a random color? We
could use undefined as a special value for that purpose:

element.highlight(undefined); // use a random color

146 Chapter 6 Library and API Design

But this would be at odds with undefined’s usual meaning. This
makes it easy to get the wrong behavior when getting the value from
another source, particularly one that might not have a value to pro-
vide. For example, a program might be using a configuration object
with an optional color preference:

var config = JSON.parse(preferences);

e
element.highlight(config.highlightColor); // may be random

If the preferences do not specify a color, the programmer will most
likely expect to get the default, just as if no value were provided. But
by repurposing undefined, we actually caused this code to generate
a random color. A better API might use a special color name for the
random case:

element.highTight("random™);

Sometimes it’s not possible for an API to choose a special string value
that’s distinguishable from the normal set of string values accepted
by the function. In these cases, there are special values other than
undefined, such as null or true. But these tend not to lead to very
readable code:

element.highTight(null);

For someone who is reading the code and may not have your library
committed to memory, this code is rather opaque. In fact, a first guess
might be that it removes highlighting. A more explicit and descriptive
option is to represent the random case as an object with a random
property (see Item 55 for more on options objects):

element.highlight({ random: true });

Another place to watch out for undefined is in the implementation
of optional arguments. In theory, the arguments object (see Item 51)
makes it possible to detect whether an argument was passed, but in
practice, testing for undefined leads to more robust APIs. For example,
a web server might take an optional host name:

var sl = new Server(80, "example.com");
var s2 = new Server(80); // defaults to "localhost"

The Server constructor could be implemented by testing
arguments.length:

function Server(port, hostname) {
if (arguments.length < 2) {
hostname = "Tocalhost";

}

Item 54: Treat undefined As “No Value” 147

hostname = String(Chostname);
Y/
3

But this has a similar problem to the element.highlight method
above. If a program provides an explicit argument by requesting a
value from another source such as a configuration object, it might
produce undefined:

var s3 = new Server(80, config.hostname);

If there’s no hostname preference specified by config, the natural
behavior is to use the default "localhost". But the above implemen-
tation ends up with the host name "undefined". It’s better to test for
undefined, which could be produced by leaving off the argument or by
providing an argument expression that turns out to be undefined:

function Server(port, hostname) {

if (hostname === undefined) {
hostname = "localhost";

}

hostname = String(hostname);

Y/

}

A reasonable alternative is to test whether hostname is truthy (see
Item 3). Logical operators make this convenient:

function Server(port, hostname) {
hostname = String(hostname || "localhost");
/) ..

}

This version uses the logical OR operator (||), which returns the first
argument if it is a truthy value and otherwise returns its second
argument. So, if hostname is undefined or an empty string, the expres-
sion (hostname || "localhost™) evaluates to "localhost". As such, this
is technically testing for more than undefined—it will treat all falsy
values the same as undefined. This is probably acceptable for Server
since an empty string is not a valid host name. So, if you are happy
with a looser API that coerces all falsy values to a default value, truth-
iness testing is a concise way to implement parameter default values.

But beware: Truthiness is not always a safe test. If a function should
accept the empty string as a legal value, a truthy test will override
the empty string and replace it with the default value. Similarly, a
function that accepts a number should not use a truthy test if it
allows 0 (or NaN, although it’s less common) as an acceptable value.

148 Chapter 6 Library and API Design

For example, a function for creating a user interface element might
allow an element to have a width or height of 0, but provide a different
default value:

var cl = new Element(0, 0); // width: 0, height: 0
var c2 = new Element(); // width: 320, height: 240

An implementation that uses truthiness would be buggy:

function Element(width, height) {
this.width = width || 320; // wrong test
this.height = height || 240; // wrong test
Y/

}

var cl = new Element(0, 0);

cl.width; // 320
cl.height; // 240
Instead, we have to resort to the more verbose test for undefined:

function Element(width, height) {

this.width = width === undefined ? 320 : width;
this.height = height === undefined ? 240 : height;
Y/

}

var cl = new Element(0, 0);

cl.width; // 0
cl.height; // 0

var c2 = new Element(Q);

c2.width; // 320
c2.height; // 240

Things to Remember

+ Avoid using undefined to represent anything other than the absence
of a specific value.

+ Use descriptive string values or objects with named boolean proper-
ties, rather than undefined or null, to represent application-specific
flags.

+ Test for undefined instead of checking arguments.length to provide
parameter default values.

Item 55: Accept Options Objects for Keyword Arguments 149

+ Never use truthiness tests for parameter default values that should
allow 0, NaN, or the empty string as valid arguments.

Item 55: Accept Options Objects for Keyword
Arguments

Keeping consistent conventions for argument order, as Item 53 sug-
gests, is important for helping programmers remember what each
argument in a function call means. This works to a point. But it
simply doesn’t scale beyond a few arguments. Try making sense of a
function call such as the following:

var alert = new Alert(100, 75, 300, 200,
"Error", message,
"bTue", "white", "black",
"error", true);

We've all seen APIs like this. It’s often the result of argument creep,
where a function starts out simple, but over time, as the library
expands in functionality, the signature acquires more and more
arguments.

Fortunately, JavaScript provides a simple, lightweight idiom that
works well for larger function signatures: the options object. An
options object is a single argument that provides additional argument
data through its named properties. The object literal form makes this
especially pleasant to read and write:

var alert = new Alert({
x: 100, y: 75,
width: 300, height: 200,
title: "Error", message: message,
titleColor: "blue", bgColor: "white", textColor: "black",
jcon: "error", modal: true

s

This API is a little more verbose, but noticeably easier to read. Each
argument becomes self-documenting: There’s no need for a comment
explaining its role, since its property name explains it perfectly. This
is especially helpful for boolean parameters such as modal: Someone
reading a call to new Alert might be able to infer the purpose of a
string argument from its contents, but a naked true or false is not
particularly informative.

Another benefit of options objects is that any of the arguments can
be optional, and a caller can provide any subset of the optional
arguments. With ordinary arguments (sometimes called positional

150 Chapter 6 Library and API Design

arguments, since they are distinguished not by name but by their
position in the argument list), optional arguments can often intro-
duce ambiguities. For example, if we want both the position and the
size of an Alert object to be optional, then it’s not clear how to inter-
pret a call such as this:

var alert = new Alert(app,
150, 150,
"Error", message,
"blue", "white", "black",
"error", true);

Are the first two numbers meant to specify the x and y or width and
height arguments? With an options object, there’s no question:

var alert = new Alert({
parent: app,
width: 150, height: 100,
title: "Error", message: message,
titleColor: "blue", bgColor: "white", textColor: "black",
icon: "error", modal: true

b;

Traditionally, options objects consist exclusively of optional argu-
ments, so it’s even possible to omit the object entirely:

var alert = new Alert(); // use all default parameter values

If there are one or two required arguments, it’s better to keep them
separate from the options object:

var alert = new Alert(app, message, {
width: 150, height: 100,
title: "Error",
titleColor: "blue", bgColor: "white", textColor: "black",
jcon: "error'", modal: true

b;

Implementing a function that accepts an options object takes a little
more work. Here is a thorough implementation:

function Alert(parent, message, opts) {
opts = opts || {}; // default to an empty options object

this.width = opts.width === undefined ? 320 : opts.width;
this.height = opts.height === undefined

? 240

: opts.height;
this.x = opts.x === undefined

? (parent.width / 2) - (this.width / 2)
: opts.x;

Item 55: Accept Options Objects for Keyword Arguments 151

this.y = opts.y === undefined
? (parent.height / 2) - (this.height / 2)
1 opts.y;
this.title = opts.title || "Alert";
this.titleColor = opts.titleColor || "gray";
this.bgColor = opts.bgColor || "white";
this.textColor = opts.textColor || "black";
this.icon = opts.icon || "info";
this.modal = !!opts.modal;

this.message = message;

}

The implementation starts by providing a default empty options
object, using the || operator (see Item 54). The numeric arguments
test for undefined as Item 54 advises, since 0 is a valid value but not
the default. For the string parameters, we use logical OR under the
assumption that an empty string is not a valid value and should be
replaced by a default value. The modal parameter coerces its argument
to a boolean with a double negation pattern (!!).

This code is a little more verbose than it would be with positional
arguments. Now, it's worth paying the price within the library if it
makes users’ lives easier. But we can make our own life easier with
a useful abstraction: an object extension or merging function. Many
JavaScript libraries and frameworks come with an extend function,
which takes a target object and a source object and copies the proper-
ties of the latter object into the former. One of the most useful appli-
cations of this utility is for abstracting out the logic of merging default
values and user-provided values for options objects. With the help of
extend, the Alert function looks quite a bit cleaner:

function Alert(parent, message, opts) {

opts = extend({
width: 320,
height: 240

s

opts = extend({
x: (parent.width / 2) - (opts.width / 2),
y: (parent.height / 2) - (opts.height / 2),
title: "Alert",
titleColor: "gray",
bgColor: "white",
textColor: "black",
jcon: "info",
modal: false

}, opts);

152 Chapter 6 Library and API Design

this.width = opts.width;
this.height = opts.height;

this.x = opts.x;

this.y = opts.y;

this.title = opts.title;
this.titleColor = opts.titleColor;
this.bgColor = opts.bgColor;
this.textColor = opts.textColor;
this.icon = opts.icon;

this.modal = opts.modal;

}

This avoids constantly reimplementing the logic of checking for the
presence of each argument. Notice how we use two calls to extend,
since the default values for x and y depend on first computing the val-
ues of width and height.

We can clean this up even further if all we want to do with the options
is copy them into this:

function Alert(parent, message, opts) {
opts = extend({
width: 320,
height: 240
1
opts = extend({
x: (parent.width / 2) - (opts.width / 2),
y: (parent.height / 2) - (opts.height / 2),
title: "Alert",
titleColor: "gray",
bgColor: "white",
textColor: "black",
jcon: "info",
modal: false
}, opts);
extend(this, opts);
}

Different frameworks provide different variations of extend, but typi-
cally the implementation works by enumerating the properties of the
source object and copying them into the target whenever they are not
undefined:

function extend(target, source) {
if (source) {

for (var key 1in source) {

var val = sourcelkey];

Item 56: Avoid Unnecessary State 153

if (typeof val !== "undefined") {
target[key] = val;
}
3
3
return target;

}

Notice that there are small differences between the original version
of Alert and the implementation using extend. For one, our condi-
tional logic in the first version avoids even computing the default val-
ues if they aren't needed. As long as computing the defaults has no
side effects such as modifying the user interface or sending a net-
work request—which is usually the case—this isn’t really a problem.
Another difference is in the logic for determining whether a value was
provided. In our first version, we treat an empty string the same as
undefined for the various string arguments. But it's more consistent
to treat only undefined as a missing argument; using the || operator
was more expedient but a less uniform policy for providing default
parameter values. Uniformity is a good goal in library design, because
it leads to better predictability for consumers of the API.

Things to Remember
+ Use options objects to make APIs more readable and memorable.

+ The arguments provided by an options object should all be treated
as optional.

+ Use an extend utility function to abstract out the logic of extracting
values from options objects.

Item 56: Avoid Unnecessary State

APIs are sometimes classified as either stateful or stateless. A state-
less API provides functions or methods whose behavior depends only
on their inputs, not on the changing state of the program. The meth-
ods of a string are stateless: The string’s contents cannot be modified,
and the methods depend only on the contents of the string and the
arguments passed to the method. No matter what else is going on in
a program, the expression "foo".toUpperCase() will always produce
"FO0". The methods of a Date object, by contrast, are stateful: Calling
toString on the same Date object can produce different results based
on whether the Date’s properties have been modified by its various set
methods.

154 Chapter 6 Library and API Design

While state is sometimes essential, stateless APIs tend to be easier to
learn and use, more self-documenting, and less error-prone. A famous
stateful API is the web’s Canvas library, which provides user inter-
face elements with methods for drawing shapes and images onto their
surface. A program can draw text onto a canvas using the fillText
method:

c.fi11Text("hello, world!", 75, 25);

This method provides a string to draw and a position in the canvas.
But it doesn't specify other attributes of the drawn text such as its
color, transparency, or text style. All of these attributes are specified
separately by changing the internal state of the canvas:

c.fi11Style = "blue";

c.font = "24pt serif";

c.textAlign = "center";
c.fi11Text("hello, world!", 75, 25);

A less stateful version of the API might instead look like this:

c.fillText("hello, world!"™, 75, 25, {
fi11Style: "blue",
font: "24pt serif",
textAlign: "center"

b;

Why might the latter be preferable? First of all, it's much less frag-
ile. The stateful API requires modifying the internal state of a can-
vas in order to do anything custom, and this causes one drawing
operation to affect another one, even if they have nothing to do with
each other. For example, the default fill style is black. But you can
only count on getting the default value if you know that no one has
changed the defaults already. If you want to do a drawing operation
that uses the default color after changing it, you have to specify the
default explicitly:

c.fillText("text 1", 0, 0); // default color
c.fi11Style = "blue";

c.fil1Text("text 2", 0, 30); // blue
c.fi11Style = "black";

c.Til1Text("text 3", 0, 60); // back in black

Compare this to a stateless API, which would automatically enable
the reuse of default values:

c.fil1Text("text 1", 0, 0); // default color
c.fillText("text 2", 0, 30, { fillStyle: "blue" }); // blue
c.fillText("text 3", 0, 60); // default color

Item 56: Avoid Unnecessary State 155

Notice also how each statement becomes more readable: To under-
stand what any individual call to fillText does, you don’t have to
understand all the modifications that precede it. In fact, the canvas
might even be modified in some completely separate part of the pro-
gram. This can easily lead to bugs, where one piece of code written
somewhere else changes the state of the canvas:

c.fiT1Style = "blue";
drawMyImage(c); // did drawMyImage change c?
c.fil1Text("hello, world!", 75, 25);

To understand what happens in the last line, we have to know what
modifications drawMyImage might make to the canvas. A stateless API
leads to more modular code, which avoids bugs based on surprising
interactions between different parts of your code, while simultane-
ously making the code easier to read.

Stateful APIs are also more difficult to learn. Reading the documen-
tation for fi11Text, you can't tell what aspects of the state of a canvas
affect the drawing. Even if some of them are easy to guess, it’s hard
for a nonexpert to know whether they’'ve correctly initialized all of the
necessary state. It's of course possible to provide an exhaustive list in
the documentation of fi11Text. And when you do need a stateful API,
you should definitely document the state dependencies carefully. But
a stateless API eliminates these implicit dependencies altogether, so
they don't need the extra documentation in the first place.

Another benefit of stateless APIs is conciseness. A stateful API tends
to lead to a proliferation of additional statements just to set the inter-
nal state of an object before calling its methods. Consider a parser for
the popular “INI” configuration file format. For example, a simple INI
file might look like this:

[Host]
address=172.0.0.1
name=Tocalhost
[Connections]
timeout=10000

One approach to an API for this kind of data would be to provide a
setSection method for selecting a section before looking up configura-
tion parameters with a get method:

var ini = INI.parse(src);
ini.setSection("Host");

var addr = ini.get("address");
var hostname = ini.get("name");

156 Chapter 6 Library and API Design

ini.setSection("Connection™);
var timeout = ini.get("timeout");
var server = new Server(addr, hostname, timeout);

But with a stateless API, it’s not necessary to create extra variables
like addr and hostname to save the extracted data before updating the
section:

var ini = INI.parse(src);

var server = new Server(ini.Host.address,
ini.Host.name,
ini.Connection.timeout);

Notice how once we make the section explicit we can simply represent
the ini object as a dictionary, and each section as a dictionary, mak-
ing the API even simpler. (See Chapter 5 to learn more about dictio-
nary objects.)

Things to Remember

+ Prefer stateless APIs where possible.

+ When providing stateful APIs, document the relevant state that
each operation depends on.

Item 57: Use Structural Typing for Flexible Interfaces

Imagine a library for creating wikis: web sites containing content
that users can interactively create, delete, and modify. Many wikis
feature simple, text-based markup languages for creating content.
These markup languages typically provide a subset of the available
features of HTML, but with a simpler and more legible source format.
For example, text might be formatted by surrounding it with asterisks
for bold, underscores for underlining, and forward slashes for italics.
Users can enter text such as this:

This sentence contains a *bold phrase* within it.
This sentence contains an _underlined phrase_ within 1it.
This sentence contains an /italicized phrase/ within it.

The site would then display the content to wiki readers as:
This sentence contains a bold phrase within it.
This sentence contains an underlined phrase within it.

This sentence contains an italicized phrase within it.

Item 57: Use Structural Typing for Flexible Interfaces 157

A flexible wiki library might provide application writers with a choice
of markup languages, since many different popular formats have
emerged over the years.

To make this work, we need to separate the functionality of extracting
the contents of user-created markup source text from the rest of the
wiki functionality, such as account management, revision history, and
content storage. The rest of the application should interact with the
extraction functionality through an interface with a well-documented
set of properties and methods. By programming strictly to the inter-
face’s documented API and ignoring the implementation details
of those methods, the rest of the application can function correctly
regardless of which source format an application chooses to use.

Let’s look a little more closely at what kind of interface is needed for
wiki content extraction. The library must be able to extract metadata
such as page title and author and to format page contents as HTML
for displaying to wiki readers. We can represent each page in the wiki
as an object that provides access to this data through page methods
such as getTitle, getAuthor, and toHTML.

Next, the library needs to provide a way to create an application with
a custom wiki formatter, as well as some built-in formatters for popu-
lar markup formats. For example, an application writer might wish to
use the MediaWiki format (the format used by Wikipedia):

var app = new Wiki(Wiki.formats.MEDIAWIKI);

The library would store this formatter function internally in the Wiki
instance object:

function Wiki(format) {
this.format = format;

}

Whenever a reader wants to view a page, the application retrieves its
source and renders an HTML page using the internal formatter:

Wiki.prototype.displayPage = function(source) {
var page = this.format(source);
var title = page.getTitle();
var author = page.getAuthor();
var output = page.toHTML(Q);
/) .
};

How would a formatter such as Wiki.formats.MEDIAWIKI be imple-
mented? Programmers familiar with class-based programming might

158 Chapter 6 Library and API Design

be inclined to create a base Page class that represents the user-
created content and implement each different format as a subclass
of Page. The MediaWiki format would be implemented with a class
MwPage that extends Page, and MEDIAWIKI would be a “factory function”
that returns an instance of MWPage:

function MWPage(source) {
Page.call(this, source); // call the super-constructor

/e
}

// MWPage extends Page
MWPage.prototype = Object.create(Page.prototype);

MwPage.prototype.getTitle = /* ... */;
MWPage.prototype.getAuthor = /* ... */;
MWPage.prototype.toHTML = /* ... */;

Wiki.formats.MEDIAWIKI = function(source) {
return new MwWPage(source);

1

(See Chapter 4 for more about implementing class hierarchies with
constructors and prototypes.) But what practical purpose does the
base Page class serve? Since MWPage needs its own implementation
of the methods required by the wiki application—getTitle, getAuthor,
and toHTML—there’s not necessarily any useful implementation code to
inherit. Notice, too, that the displayPage method above does not care
about the inheritance hierarchy of the page object; it only requires
the relevant methods in order to work. So implementations of wiki
formats are free to implement those methods however they like.

Where many object-oriented languages encourage structuring your
programs around classes and inheritance, JavaScript tends not to
stand on ceremony. It is often perfectly sufficient to provide an imple-
mentation for an interface like the MediaWiki page format with a sim-
ple object literal:

Wiki.formats.MEDIAWIKI = function(source) {
// extract contents from source

V2T

return {
getTitle: function() { /* ... */ 1},
getAuthor: function() { /* ... */ },
toHTML: function() { /* ... */ }

s

Item 57: Use Structural Typing for Flexible Interfaces 159

What’s more, inheritance sometimes causes more problems than
it solves. This becomes evident when several different wiki formats
share nonoverlapping sets of functionality: There may not be any
inheritance hierarchy that makes sense. For example, imagine three
formats:

Format A: *bold*, [Link], /italics/
Format B: **bold**, [[Link]], *italics*
Format C: **bold**, [Link], *italics*

We would like to implement individual pieces of functionality for rec-
ognizing each different kind of input, but the mixing and matching of
functionality just doesn't map to any clear hierarchical relationship
between A, B, and C (I welcome you to try it!). The right thing to do
is to implement separate functions for each kind of input matching—
single asterisks, double asterisks, slashes, brackets, and so on—and
mix and match functionality as needed for each format.

Notice that by eliminating the Page superclass, we don’'t have to
replace it with anything. This is where JavaScript’s dynamic typing
really shines. Anyone who wishes to implement a new custom format
can do so without needing to “register” it somewhere. The displayPage
method works with any JavaScript object whatsoever, so long as it has
the proper structure: the expected getTitle, getAuthor, and getHTML
methods, each with the expected behavior.

This kind of interface is sometimes known as structural typing or duck
typing: Any object will do so long as it has the expected structure (if it
looks like a duck, swims like a duck, and quacks like a duck...). It's an
elegant programming pattern and especially lightweight in dynamic
languages such as JavaScript, since it doesn’'t require you to write
anything explicit. A function that calls methods on an object will
work on any object that implements the same interface. Of course,
you should list out the expectations of an object interface in your API
documentation. This way, implementers know what properties and
methods are required, and what your libraries or applications expect
of their behavior.

Another benefit of the flexibility of structural typing is for unit testing.
Our wiki library probably expects to be plugged into an HTTP server
object that implements the networking functionality of the wiki. If
we want to test the interaction sequences of the wiki without actu-
ally connecting to the network, we can implement a mock object that
pretends to behave like a live HTTP server but follows a prescribed
script instead of touching the network. This provides a repeatable
interaction with a fake server, instead of relying on the unpredictable

160 Chapter 6 Library and API Design

behavior of the network, making it possible to test the behavior of
components that interact with the server.
Things to Remember

+ Use structural typing (also known as duck typing) for flexible object
interfaces.

+ Avoid inheritance when structural interfaces are more flexible and
lightweight.

+ Use mock objects, that is, alternative implementations of interfaces
that provide repeatable behavior, for unit testing.

Item 58: Distinguish between Array and Array-Like

Consider two different class APIs. The first is for bit vectors: ordered
collections of bits.

var bits = new BitVector();

bits.enable(4);
bits.enable([1, 3, 8, 171);

bits.bitAt(4); // 1
bits.bitAt(8); // 1
bits.bitAt(9); // 0

Notice that the enable method is overloaded: You can pass it either an
index or an array of indices.

The second class API is for string sets: unordered collections of strings.
var set = new StringSet();
set.add("Hamlet");

set.add(["Rosencrantz", "Guildenstern"]);
set.add({ "Ophelia": 1, "Polonius": 1, "Horatio": 1 });

set.contains("Polonius™); // true
set.contains("Guildenstern"); // true
set.contains("Falstaff'); // false

Similar to the enable method of bit vectors, the add method is also over-
loaded, but in addition to strings and arrays of strings, it also accepts
a dictionary object.

Item 58: Distinguish between Array and Array-Like 161

To implement BitVector.prototype.enable, we can avoid the question
of how to determine whether an object is an array by testing the other
case first:

BitVector.prototype.enable = function(x) {
if (typeof x === "number") {
this.enableBit(x);
} else { // assume x is array-like
for (var i = 0, n = x.length; i < n; i++) {
this.enabTeBit(x[1]);
}

};

No problem. What about StringSet.prototype.add? Now we seem to
need to distinguish between arrays and objects. But that question
doesn’t even make sense—dJavaScript arrays are objects! What we
really want to do is separate out array objects from nonarray objects.

Making this distinction is at odds with JavaScript’s flexible notion
of “array-like” objects (see Item 51). Any object can be treated as an
array as long as it obeys the right interface. And there’s no clear way
to test an object to see whether it's intended to satisfy an interface.
We might try to guess that an object that has a Tength property is
intended to be an array, but this is no guarantee; what if we happen
to use a dictionary object that has the key "Tength" in it?

dimensions.add({
"length": 1, // implies array-like?
"height": 1,
"width": 1

B

Using imprecise heuristics to determine their interface is a recipe for
misunderstanding and misuse. Guessing whether an object imple-
ments a structural type is sometimes known as duck testing (after
the “duck types” described in Item 57), and it’s bad practice. Since
objects are not tagged with explicit information to indicate the struc-
tural types they implement, there’s no reliable, programmatic way to
detect this information.

Overloading two types means there must be a way to distinguish the
cases. And it’s not possible to detect that a value implements a struc-
tural interface. This leads to the following rule:

APIs should never overload structural types with other overlapping
types.

162 Chapter 6 Library and API Design

For StringSet, the answer is not to use the structural “array-like”
interface in the first place. We should instead choose a type that car-
ries a well-defined “tag” indicating that the user truly intends it to
be an array. An obvious but imperfect choice is to use the instanceof
operator to test whether an object inherits from Array.prototype:

StringSet.prototype.add = function(x) {
if (typeof x === "string") {
this.addString(x);
} else if (x 1instanceof Array) { // too restrictive
x.forEach(function(s) {
this.addString(s);
}, this);
} else {
for (var key in x) {
this.addString(key);
h;

1

After all, we know for sure that anytime an object is an instance of
Array, it behaves like an array. But this time it turns out that this
is too fine a distinction. In environments where there can be multi-
ple global objects, there may be multiple copies of the standard Array
constructor and prototype object. This happens in the browser, where
each frame gets a separate copy of the standard library. When com-
municating values between frames, an array from one frame will not
inherit from the Array.prototype of another frame.

For this reason, ES5 introduced the Array.isArray function, which
tests whether a value is an array, regardless of prototype inheritance.
In ECMAScript standards-ese, this function tests whether the value
of the internal [[Class]] property of the object is "Array". When you
need to test whether an object is a true array, not just an array-like
object, Array.isArray is more reliable than instanceof.

This leads to a more robust implementation of the add method:

StringSet.prototype.add = function(x) {

if (typeof x === "string") {
this.addString(x);

} else if (Array.isArray(x)) { // tests for true arrays
x.forEach(function(s) {

this.addString(s);

}, this);

} else {

Item 58: Distinguish between Array and Array-Like 163

for (var key 1in x) {
this.addString(key);
}

}s;

In environments that don’'t support ES5, you can use the standard
Object.prototype.toString method to test whether an object is an
array:

var toString = Object.prototype.toString;

function isArray(x) {
return toString.call(x) === "[object Array]";

}

The Object.prototype.toString function uses the internal [[Class]]
property of an object to create its result string, so it too is a more
reliable method than instanceof for testing whether an object is an
array.

Notice that this version of add has different behavior that affects con-
sumers of the API. The array version of the overloaded API does not
accept arbitrary array-like objects. You can't, for example, pass an
arguments object and expect it to be treated as an array:

function MyClass() {
this.keys = new StringSet();
Y/

}

MyClass.prototype.update = function() {
this.keys.add(arguments); // treated as a dictionary
};

Instead, the correct way to use add is to convert the object to a true
array, using the idiom described in Item 51:

MyClass.prototype.update = function() {
this.keys.add([].sTice.call(arguments));
3

Callers need to do this conversion whenever they want to pass an
array-like object to an API that expects a true array. For this reason,
it's necessary to document which of the two types your API accepts. In
the examples above, the enable method accepts numbers and array-
like objects, whereas the add method accepts strings, true arrays, and
(nonarray) objects.

164 Chapter 6 Library and API Design

Things to Remember
+ Never overload structural types with other overlapping types.

+ When overloading a structural type with other types, test for the
other types first.

+ Accept true arrays instead of array-like objects when overloading
with other object types.

+ Document whether your API accepts true arrays or array-like
values.

+ Use ES5’s Array.isArray to test for true arrays.

Item 59: Avoid Excessive Coercion

JavaScript is notoriously lax about types (see Item 3). Many of the
standard operators and libraries automatically coerce their argu-
ments to the expected type rather than throwing exceptions for unex-
pected inputs. Without additional logic, building off of these built-in
operations inherits their coercing behavior:

function square(x) {

return x * Xx;

}

square("3"); // 9

Coercions can certainly be convenient. But as Item 3 points out,
they can also cause trouble, hiding errors and leading to erratic and
hard-to-diagnose behavior.

Coercions are especially confusing when working with overloaded func-
tion signatures, like the enable method of the bit vector class of Item
58. The method uses its argument’s type to determine its behavior. The
signature would become harder to understand if enable attempted to
coerce its argument to an expected type. Which type should it choose?
Coercing to a number completely breaks the overloading:

BitVector.prototype.enable = function(x) {
X = Number(x);

if (typeof x === "number") { // always true
this.enabTleBit(x);
} else { // never executed

for (var i = 0, n = x.length; i < n; i++) {
this.enableBit(x[i1]);
}

Item 59: Avoid Excessive Coercion 165

As a general rule, it's wise to avoid coercing arguments whose type is
used to determine an overloaded function’s behavior. Coercions make
it harder to tell which variant you will end up with. Imagine trying to
make sense of this use:

bits.enab1e("100"); // number or array-1like?

This use of enable is ambiguous: The caller could plausibly have
intended the argument to be treated as a number or as an array of bit
values. But our constructor was not designed for strings, so there’s no
way to know. It’s likely an indication that the caller didn’t understand
the API. In fact, if we wanted to be a little more careful in our API, we
could enforce that only numbers and objects are accepted:

BitVector.prototype.enable = function(x) {

if (typeof x === "number") {
this.enableBit(x);
} else if (typeof x === "object" && x) {

for (var i = 0, n = x.length; i < n; i++) {
this.enableBit(x[i]);
3
} else {
throw new TypeError("expected number or array-Tike");
}
}

This last version of enable is an example of a more cautious style known
as defensive programming, which attempts to defend against potential
errors with additional checks. In general, it's not possible to defend
against all possible bugs. For example, we could also check to ensure
that if x is an object it also has a Tength property, but this wouldn't pro-
tect against, say, an accidental use of a String object. And JavaScript
provides only very rudimentary tools for implementing these checks,
such as the typeof operator, but it's possible to write utility functions
to guard function signatures more concisely. For example, we could
guard the BitVector constructor with a single up-front check:

function BitVector(x) {
uint32.or(arrayLike) .guard(x);
Y/

}

To make this work, we can build a utility library of guard objects
with the help of a shared prototype object that implements the guard
method:

var guard = {
guard: function(x) {
if (!this.test(x)) {

166 Chapter 6 Library and API Design

throw new TypeError("expected " + this);

};

Each guard object then implements its own test method and string
description for error messages:

var uint32 = Object.create(guard);

uint32.test = function(x) {
return typeof x === "number" && X === (x >>> 0);

};

uint32.toString = function() {
return "uint32";

};

The uint32 guard uses a trick of JavaScript’s bitwise operators to per-
form a conversion to an unsigned 32-bit integer. The unsigned right
shift operator converts its first argument to an unsigned 32-bit integer
before performing a bitwise shift (see Item 2). Shifting by zero bits
then has no effect on the integer value. So uint32.test effectively com-
pares a number to the result of converting it to an unsigned 32-bit
integer.

Next we can implement the arraylLike guard object:

var arraylLike = Object.create(guard);

arraylLike.test = function(x) {
return typeof x === "object" & & x && uint32.test(x.length);
};

arraylLike.toString = function() {
return "array-Tike object";

3
Notice that we have taken defensive programming one step further

here, ensuring that an array-like object should have an unsigned
integer length property.

Lastly, we can implement “chaining” methods (see Item 60), such as
or, as prototype methods:

guard.or = function(other) {
var result = Object.create(guard);

Item 60: Support Method Chaining 167

var self = this;
result.test = function(x) {

return self.test(x) || other.test(x);
};
var description = this + " or " + other;
result.toString = function() {

return description;

1

return result;

};

This method combines the receiver guard object (the object bound to
this) with a second guard object (the other parameter), producing a
new guard object whose test and toString methods combine the two
input objects’ methods. Notice that we use a local self variable to save
a reference to this (see Items 25 and 37) for use inside the resultant
guard object’s test method.

These tests can help catch bugs earlier when they crop up, which
makes them significantly easier to diagnose. Nevertheless, they can
clutter a codebase and potentially affect application performance.
Whether to use defensive programming is a question of cost (the num-
ber of extra tests you have to write and execute) versus benefit (the
number of bugs you catch earlier, saving development and debugging
time).

Things to Remember
+ Avoid mixing coercions with overloading.

+ Consider defensively guarding against unexpected inputs.

Item 60: Support Method Chaining

Part of the power of stateless APIs (see Item 56) is their flexibility for
building compound operations out of smaller ones. A great example
is the replace method of strings. Since the result is itself a string, we
can perform multiple replacements by repeatedly calling replace on
the result of the previous method call. A common usage of this pat-
tern is for replacing special characters of a string before inserting it
into HTML:

function escapeBasicHTML(str) {
return str.replace(/&/g, "&")
.replace(/</g, "&1t;")

168 Chapter 6 Library and API Design

.replace(/>/g, ">")

.replace(/"/g, """)

.replace(/'/g, "''");
3

The first call to replace returns a string with all instances of the spe-
cial character "&" replaced with the HTML escape sequence "&";
the second call then replaces any instances of "<" with the escape
sequence "&It;", and so on. This style of repeated method calls is
known as method chaining. It’s not necessary to write in this style,
but it’'s much more concise than saving each intermediate result to an

intermediate variable:

function escapeBasicHTML(strl) {
var str2 = strl.replace(/&/g, "&'");
var str3 = str2.replace(/</g, "<");
var str4 = str3.replace(/>/g, ">");
var str5 = strd.replace(/"/g, """);
var stré6 = str5.replace(/'/g, "'");
return stré6;

}

Eliminating the temporary variables makes it clearer to readers of the
code that the intermediate results are only important as a step along
the way to the final result.

Method chaining can be used whenever an API produces objects of
some interface (see Item 57) with methods that produce more objects,
often of the same interface. The array iteration methods described in
Items 50 and 51 are another great example of a “chainable” API:

var users = records.map(function(record) {
return record.username;
1))
.fiTter(function(username) {
return !!username;
1))
.map (function(username) {
return username.tolLowerCase();

b;

This chained operation takes an array of objects representing user
records, extracts the username property of each record, filters out
any empty usernames, and finally converts the usernames to lower-
case strings.

This style is so flexible and expressive for consumers of an API, that
it's worth designing your API to support it. Often, in stateless APIs,

Item 60: Support Method Chaining 169

“chainability” falls out as a natural consequence: If your API does not
modify an object it has to return a new object. As a result, you get
an API whose methods all produce more objects with similar sets of
methods.

Method chaining is also useful to support in a stateful setting. The
trick here is for methods that update an object to return this instead
of undefined. This makes it possible to perform multiple updates on
the same object via a sequence of chained method calls:

element.setBackgroundColor("yellow")
.setColor("red")
.setFontWeight("bold");

Method chaining for stateful APIs is sometimes known as the fluent
style. (The term was coined by programmers simulating Smalltalk’s
“method cascades”; a built-in syntax for calling multiple methods on a
single object.) If the update methods do not return this, then the user
of the API has to repeat the name of the object each time. If the object
is simply named by a variable, this doesn't make much difference. But
when combining stateless methods that retrieve objects with update
methods, method chaining can make for very concise and readable
code. The front-end library jQuery popularized this approach with a
set of (stateless) methods for “querying” a web page for user interface
elements and a set of (stateful) methods for updating those elements:

$("#notification™) // find notification element
.htm1("Server not responding.") // set notification message
.removeClass("info") // remove one set of styling
.addClass("error"); // add more styling

Since the stateful calls to the html, removeClass, and addClass meth-
ods support the fluent style by returning the same object, we don't
even have to create a temporary variable for the result of the query
performed by the jQuery function ($). Of course, if users find this
style too terse, they can always introduce a variable to name the
result of the query:

var element = $("#notification");
element.html("Server not responding.");
element.removeClass("info");
element.addClass("error');

But by supporting method chaining, the API allows programmers to
decide for themselves which style they prefer. If the methods returned
undefined, users would be forced to write in the more verbose style.

170 Chapter 6 Library and API Design

Things to Remember
+ Use method chaining to combine stateless operations.

+ Support method chaining by designing stateless methods that pro-
duce new objects.

+ Support method chaining in stateful methods by returning this.

Concurrency

JavaScript was designed as an embedded scripting language. Java-
Script programs do not run as stand-alone applications, but as
scripts in the context of a larger application. The flagship example
is, of course, the web browser. A browser can have many windows
and tabs running multiple web applications, each responding to
various inputs and stimuli: user actions via keyboard, mouse, or
touch, the arrival of data from the network, or timed alarms. These
events can occur at any point—even simultaneously—during the
lifetime of a web application. And for each kind of event, the applica-
tion may wish to be notified of information and respond with custom
behavior.

JavaScript’s approach to writing programs that respond to multiple
concurrent events is remarkably user-friendly and powerful, using a
combination of a simple execution model, sometimes known as event-
queue or eventloop concurrency, with what are known as asynchro-
nous APIs. Thanks to the effectiveness of this approach, as well as the
fact that JavaScript is standardized independently of web browsers,
JavaScript is used as the programming language for a variety of other
applications, from desktop applications to server-side frameworks
such as Node.js.

Curiously, the ECMAScript standard has, to date, never said a word
about concurrency. Consequently, this chapter deals with “de facto”
characteristics of JavaScript rather than the official standard. Never-
theless, most JavaScript environments share the same approach to
concurrency, and future versions of the standard may standardize on
this widely implemented execution model. Regardless of the standard,
working with events and asynchronous APIs is a fundamental part of
programming in JavaScript.

172 Chapter 7 Concurrency

Item 61: Don’t Block the Event Queue on I/O

JavaScript programs are structured around events: inputs that may
come in simultaneously from a variety of external sources, such as
interactions from a user (clicking a mouse button, pressing a key, or
touching a screen), incoming network data, or scheduled alarms. In
some languages, it’s customary to write code that waits for a particu-
lar input:

var text = downloadSync("http://example.com/file.txt");
console.log(text);

(The console.log API is a common utility in JavaScript platforms for
printing out debugging information to a developer console.) Func-
tions such as downloadSync are known as synchronous, or blocking:
The program stops doing any work while it waits for its input—in this
case, the result of downloading a file over the internet. Since the com-
puter could be doing other useful work while it waits for the download
to complete, such languages typically provide the programmer with
a way to create multiple threads: subcomputations that are executed
concurrently, allowing one portion of the program to stop and wait
for (“block on”) a slow input while another portion of the program can
carry on usefully doing independent work.

In JavaScript, most I/O operations are provided through asynchro-
nous, or nonblocking APIs. Instead of blocking a thread on a result,
the programmer provides a callback (see Item 19) for the system to
invoke once the input arrives:

downToadAsync("http://example.com/file.txt", function(text) {
console.log(text);

b;

Rather than blocking on the network, this API initiates the download
process and then immediately returns after storing the callback in an
internal registry. At some point later, when the download has com-
pleted, the system calls the registered callback, passing it the text of
the downloaded file as its argument.

Now, the system does not just jump right in and call the callback the
instant the download completes. JavaScript is sometimes described
as providing a run-to-completion guarantee: Any user code that is cur-
rently running in a shared context, such as a single web page in a
browser, or a single running instance of a web server, is allowed to
finish executing before the next event handler is invoked. In effect,
the system maintains an internal queue of events as they occur, and
invokes any registered callbacks one at a time.

Item 61: Don't Block the Event Queue on I/O 173

Figure 7.1 shows an illustration of example event queues in client-side
and server-side applications. As events occur, they are added to the
end of the application’s event queue (at the top of the diagram). The
JavaScript system executes the application with an internal event
loop, which plucks events off of the bottom of the queue—that is, in the
order in which they were received—and calls any registered JavaScript
event handlers (callbacks like the one passed to downloadAsync above)
one at a time, passing the event data as arguments to the handlers.

mouse moved file read
Y Y
file downloaded timer

i Y

mouse clicked path resolved
keypressed file updated
mouse moved URL requested
mouse moved timer
window resized URL requested
mouse moved URL requested

Y Y

JavaScript engine JavaScript engine

a) b)

Figure 7.1 Example event queues in a) a web client application and
b) a web server

174 Chapter 7 Concurrency

The benefit of the run-to-completion guarantee is that when your code
runs, you know that you have complete control over the application
state: You never have to worry that some variable or object property
will change out from under you due to concurrently executing code.
This has the pleasant result that concurrent programming in Java-
Script tends to be much easier than working with threads and locks
in languages such as C++, Java, or C#.

Conversely, the drawback of run-to-completion is that any and all
code you write effectively holds up the rest of the application from
proceeding. In interactive applications like the browser, a blocked
event handler prevents any other user input from being handled and
can even prevent the rendering of a page, leading to an unresponsive
user experience. In a server setting, a blocked handler can prevent
other network requests from being handled, leading to an unrespon-
sive server.

The single most important rule of concurrent JavaScript is never to
use any blocking I/O APIs in the middle of an application’s event
queue. In the browser, hardly any blocking APIs are even available,
although a few have sadly leaked into the platform over the years.
The XMLHttpRequest library, which provides network I/0O similar to the
downloadAsync function above, has a synchronous version that is con-
sidered bad form. Synchronous I/O has disastrous consequences for
the interactivity of a web application, preventing the user from inter-
acting with a page until the I/O operation completes.

By contrast, asynchronous APIs are safe for use in an event-based set-
ting, because they force your application logic to continue processing
in a separate “turn” of the event loop. In the examples above, imagine
that it takes a couple of seconds to download the URL. In that time,
an enormous number of other events may occur. In the synchronous
implementation, those events would pile up in the event queue, but
the event loop would be stuck waiting for the JavaScript code to finish
executing, preventing the processing of any other events. But in the
asynchronous version, the JavaScript code registers an event handler
and returns immediately, allowing other event handlers to process
intervening events before the download completes.

In settings where the main application’s event queue is unaffected,
blocking operations are less problematic. For example, the web plat-
form provides the Worker API, which makes it possible to spawn
concurrent computations. Unlike conventional threads, workers
are executed in a completely isolated state, with no access to the
global scope or web page contents of the application’s main thread,
so they cannot interfere with the execution of code running in from

Item 62: Use Nested or Named Callbacks for Asynchronous Sequencing 175

the main event queue. In a worker, using the synchronous variant of
XMLHttpRequest is less problematic; blocking on a download does pre-
vent the Worker from continuing, but it does not prevent the page from
rendering or the event queue from responding to events. In a server
setting, blocking APIs are unproblematic during startup, that is,
before the server begins responding to incoming requests. But when
servicing requests, blocking APIs are every bit as catastrophic as in
the event queue of the browser.

Things to Remember

+ Asynchronous APIs take callbacks to defer processing of expensive
operations and avoid blocking the main application.

+ JavaScript accepts events concurrently but processes event han-
dlers sequentially using an event queue.

+ Never use blocking I/O in an application’s event queue.

Item 62: Use Nested or Named Callbacks for
Asynchronous Sequencing

Item 61 shows how asynchronous APIs perform potentially expen-
sive I/O operations without blocking the application from continu-
ing doing work and processing other input. Understanding the order
of operations of asynchronous programs can be a little confusing at
first. For example, this program prints out "starting" before it prints
"finished", even though the two actions appear in the opposite order
in the program source:

downToadAsync("file.txt", function(file) {
console.log("finished");

b;

console.log("starting");

The downloadAsync call returns immediately, without waiting for the
file to finish downloading. Meanwhile, JavaScript’s run-to-completion
guarantee ensures that the next line executes before any other event
handlers are executed. This means that "starting" is sure to print
before "finished".

The easiest way to understand this sequence of operations is to think
of an asynchronous API as initiating rather than performing an oper-
ation. The code above first initiates the download of a file and then
immediately prints out "starting". When the download completes, in
some separate turn of the event loop, the registered event handler
prints "finished".

176 Chapter 7 Concurrency

So, if placing several statements in a row only works if you need
to do something after initiating an operation how do you sequence
completed asynchronous operations? For example, what if we need
to look up a URL in an asynchronous database and then download
the contents of that URL? It's impossible to initiate both requests
back-to-back:

db.TookupAsync("url1", function(url) {

/7 ?

B

downloadAsync(url, function(text) { // error: url is not bound
console.log("contents of " + url + ": " + text);

s

This can't possibly work, because the URL resulting from the data-
base lookup is needed as the argument to downloadAsync, but it’s not
in scope. And with good reason: All we've done at that step is initiate
the database lookup; the result of the lookup simply isn’t available
yet.

The most straightforward answer is to use nesting. Thanks to the
power of closures (see Item 11), we can embed the second action in
the callback to the first:

db.TookupAsync("ur1", function(url) {
downloadAsync(url1, function(text) {
console.log("contents of " + url + ": " + text);
9K
9K

There are still two callbacks, but the second is contained within the
first, creating a closure that has access to the outer callback’s vari-
ables. Notice how the second callback refers to url.

Nesting asynchronous operations is easy, but it quickly gets unwieldy
when scaling up to longer sequences:

db.TookupAsync("ur1", function(url) {
downloadAsync(url, function(file) {
downloadAsync("a.txt", function(a) {
downloadAsync("b.txt", function(b) {
downloadAsync("c.txt", function(c) {
/) ...
b
9K
1
1
1

Item 62: Use Nested or Named Callbacks for Asynchronous Sequencing 177

One way to mitigate excessive nesting is to lift nested callbacks back
out as named functions and pass them any additional data they need
as extra arguments. The two-step example above could be rewritten as:

db.TookupAsync("url", downloadURL);

function downTloadURL(Curl1) {
downToadAsync(url, function(text) { // still nested
showContents(url, text);
B
}

function showContents(url, text) {
console.log("contents of " + url + ": " + text);

}

This still uses a nested callback inside downloadURL in order to com-
bine the outer url variable with the inner text variable as arguments
to showContents. We can eliminate this last nested callback with bind
(see Item 25):

db.TookupAsync("url1", downloadURL);

function downToadURLCurl) {
downToadAsync(url, showContents.bind(null, url));
}

function showContents(url, text) {
console.log("contents of " + url +

+ text);
3

This approach leads to more sequential-looking code, but at the cost
of having to name each intermediate step of the sequence and copy
bindings from step to step. This can get awkward in cases like the
longer example above:

db.TookupAsync("url1", downloadURLAndFiTes);

function downTloadURLAndFiles(url) {
downToadAsync(url, downloadABC.bind(null, url));
b

// awkward name
function downloadABC(url, file) {
downToadAsync("a.txt",
// duplicated bindings
downloadFiles23.bind(null, url, file));

178 Chapter 7 Concurrency

// awkward name
function downloadBC(url, file, a) {
downToadAsync("b.txt",
// more duplicated bindings
downloadFile3.bind(null, url, file, a));

}

// awkward name
function downloadC(Curl, file, a, b) {
downToadAsync("c.txt",
// still more duplicated bindings
finish.bind(null, url, file, a, b));
}

function finish(url, file, a, b, c) {
Y/
}

Sometimes a combination of the two approaches strikes a better bal-
ance, albeit still with some nesting;:

db.TookupAsync("url1", function(url) {
downloadURLAndFiTes(url);
DK

function downTloadURLAndFiles(url) {
downToadAsync(url, downloadFiles.bind(null, url));

}

function downloadFiles(url, file) {
downToadAsync("a.txt", function(a) {
downToadAsync("b.txt", function(b) {
downToadAsync("c.txt", function(c) {
Y/
B
9N
9K
}

Even better, this last step can be improved with an additional abstrac-
tion for downloading multiple files and storing them in an array:

function downloadFiles(url, file) {
downToadAl1TAsync(["a.txt", "b.txt", "c.txt"],
function(all) {

Item 63: Be Aware of Dropped Errors 179

var a = all[0], b = all1[1], c = all[2];
Y/
9K
}

Using downloadAllAsync also allows us to download multiple files
concurrently. Sequencing means that each operation cannot even
be initiated until the previous one completes. And some operations
are inherently sequential, like downloading the URL we fetched from
a database lookup. But if we have a list of filenames to download,
chances are there’s no reason to wait for each file to finish download-
ing before requesting the next. Item 66 explains how to implement
concurrent abstractions such as downloadAl1Async.

Beyond nesting and naming callbacks, it's possible to build higher-
level abstractions to make asynchronous control flow simpler and
more concise. Item 68 describes one particularly popular approach.
Beyond that, it's worth exploring asynchrony libraries or experiment-
ing with abstractions of your own.

Things to Remember

+ Use nested or named callbacks to perform several asynchronous
operations in sequence.

+ Try to strike a balance between excessive nesting of callbacks and
awkward naming of non-nested callbacks.

+ Avoid sequencing operations that can be performed concurrently.

Item 63: Be Aware of Dropped Errors

One of the more difficult aspects of asynchronous programming to
manage is error handling. In synchronous code, it’s easy to handle
errors in one fell swoop by wrapping a section of code with a try block:

try {
O3
g0;
hQ;
} catch (e) {
// handle any error that occurred...

}

With asynchronous code, a multistep process is usually divided into
separate turns of the event queue, so it’s not possible to wrap them
all in a single try block. In fact, asynchronous APIs cannot even

180 Chapter 7 Concurrency

throw exceptions at all, because by the time an asynchronous error
occurs, there is no obvious execution context to throw the exception
to! Instead, asynchronous APIs tend to represent errors as special
arguments to callbacks, or take additional error-handling callbacks
(sometimes referred to as errbacks). For example, an asynchronous
API for downloading a file like the one from Item 61 might take an
extra function to be called in case of a network error:

downloadAsync("http://example.com/file.txt", function(text) {
console.log("File contents: " + text);

}, function(error) {
console.log("Error:

b;

To download several files, you can nest the callbacks as explained in
Item 62:

+ error);

downloadAsync("a.txt", function(a) {
downToadAsync("b.txt", function(b) {
downToadAsync("c.txt", function(c) {
console.log("Contents: " + a + b + ¢);
}, function(error) {
console.log("Error:

+ error);
1
}, function(error) { // repeated error-handling Togic
console.log("Error: " + error);
9K
}, function(error) { // repeated error-handling Tlogic
console.log("Error: " + error);

b;

Notice how in this example, each step of the process uses the same
error-handling logic, but we've repeated the same code in several
places. As always in programming, we should strive to avoid dupli-
cating code. It's easy enough to abstract this out by defining an
error-handling function in a shared scope:

function onError(error) {
console.log("Error: " + error);

}

downloadAsync("a.txt", function(a) {
downToadAsync("b.txt", function(b) {
downToadAsync("c.txt", function(c) {
console.log("Contents: " + a + b + c);
}, onError);
}, onError);
}, onError);

Item 63: Be Aware of Dropped Errors 181

Of course, if we combine multiple steps into a single compound oper-
ation with utilities such as downloadAlTlAsync (as Items 62 and 66 rec-
ommend), we naturally end up only needing to provide a single error
callback:

downloadAl1Async(["a.txt", "b.txt", "c.txt"], function(abc) {
console.log("Contents: " + abc[0] + abc[1l] + abc[2]);

}, function(error) {
console.log("Error: " + error);

b;

Another style of error-handling API, popularized by the Node.js plat-
form, takes only a single callback whose first argument is either an
error, if one occurred, or a falsy value such as null otherwise. For
these kinds of APIs, we can still define a common error-handling
function, but we need to guard each callback with an if statement:

function onError(error) {
console.log("Error: " + error);

}

downloadAsync("a.txt", function(error, a) {
if (error) {
onError(error);
return;
}
downloadAsync("b.txt", function(error, b) {
// duplicated error-checking logic
if (error) {
onError(error);
return;
}
downToadAsync(url13, function(error, c) {
// duplicated error-checking logic
if (error) {
onError(error);
return;
}
console.log("Contents:

b;

+a+b+0);

D;
b;

In frameworks with this style of error callback, programmers often
abandon conventions requiring if statements to span multiple lines
with braced bodies, leading to more concise, less distracting error
handling:

182 Chapter 7 Concurrency

function onError(error) {
console.log("Error: " + error);

}

downloadAsync("a.txt", function(error, a) {
if (error) return onError(error);

downToadAsync("b.txt", function(error, b) {
if (error) return onError(error);

downloadAsync(url13, function(error, c) {
if (error) return onError(error);

"

console.log("Contents: +a+b+ 0);
b;
B

D;

Or, as always, combining steps with an abstraction helps eliminate
duplication:

var filenames = ["a.txt", "b.txt", "c.txt"];

downloadA11Async(filenames, function(error, abc) {
if (error) {
console.log("Error:
return;

+ error);

}
console.log("Contents: " + abc[0] + abc[1l] + abc[2]);

b;

One of the practical differences between try...catch and typical
error-handling logic in asynchronous APIs is that try makes it eas-
ier to define “catchall” logic so that it’s difficult to forget to handle
errors in an entire region of code. With asynchronous APIs like the
one above, it's very easy to forget to provide error handling in any of
the steps of the process. Often, this results in an error getting silently
dropped. A program that ignores errors can be very frustrating for
users: The application provides no feedback that something went
wrong (sometimes resulting in a hanging progress notification that
never clears). Similarly, silent errors are a nightmare to debug, since
they provide no clues about the source of the problem. The best cure
is prevention: Working with asynchronous APIs requires vigilance to
make sure you handle all error conditions explicitly.

Item 64: Use Recursion for Asynchronous Loops 183

Things to Remember

+ Avoid copying and pasting error-handling code by writing shared
error-handling functions.

+ Make sure to handle all error conditions explicitly to avoid dropped
€rrors.

Item 64: Use Recursion for Asynchronous Loops

Consider a function that takes an array of URLs and tries to down-
load one at a time until one succeeds. If the API were synchronous, it
would be easy to implement with a loop:

function downTloadOneSync(urls) {
for (var i = 0, n = urls.length; i < n; i++) {
try {
return downloadSync(urls[i]);
} catch (e) { }
}
throw new Error("all downloads failed");

}

But this approach won't work for downloadOneAsync, because we can’t
suspend a loop and resume it in a callback. If we tried using a loop, it
would initiate all of the downloads rather than waiting for one to con-
tinue before trying the next:

function downloadOneAsync(urls, onsuccess, onerror) {

for (var i = 0, n = urls.Tength; i < n; i++) {

downloadAsync(urls[i], onsuccess, function(error) {
/77

9K
// loop continues

h

throw new Error("all downloads failed"™);

}

So we need to implement something that acts like a loop, but that
doesn’t continue executing until we explicitly say so. The solution is
to implement the loop as a function, so we can decide when to start
each iteration:

function downloadOneAsync(urls, onsuccess, onfailure) {
var n = urls.length;

function tryNextURL(i) {
if (i >=n) {

184 Chapter 7 Concurrency

onfailure("all downloads failed");
return;
}
downloadAsync(urls[i], onsuccess, function() {
tryNextURL(i + 1);
IOF
}

tryNextURL(0);
}

The local tryNextURL function is recursive: Its implementation involves
a call to itself. Now, in typical JavaScript environments, a recursive
function that calls itself synchronously can fail after too many calls
to itself. For example, this simple recursive function tries to call itself
100,000 times, but in most JavaScript environments it fails with a
runtime error:

function countdown(n) {

if (n === 0) {
return "done";
} else {

return countdown(n - 1);

}

countdown(100000); // error: maximum call stack size exceeded

So how could the recursive downloadOneAsync be safe if countdown
explodes when n is too large? To answer this, let’s take a small detour
and unpack the error message provided by countdown.

JavaScript environments usually reserve a fixed amount of space in
memory, known as the call stack, to keep track of what to do next after
returning from function calls. Imagine executing this little program:

function negative(x) {
return abs(x) * -1;

}

function abs(x) {
return Math.abs(x);

}

console.log(negative(42));

Item 64: Use Recursion for Asynchronous Loops 185

At the point in the application where Math.abs is called with the argu-
ment 42, there are several other function calls in progress, each wait-
ing for another to return. Figure 7.2 illustrates the call stack at this
point. At the point of each function call, the bullet symbol (¢) depicts
the place in the program where a function call has occurred and
where that call will return to when it finishes. Like the traditional
stack data structure, this information follows a “last-in, first-out” pro-
tocol: The most recent function call that pushes information onto the
stack (represented as the bottommost frame of the stack) will be the
first to pop back off the stack. When Math.abs finishes, it returns to
the abs function, which returns to the negative function, which in
turn returns to the outermost script.

When a program is in the middle of too many function calls, it can run
out of stack space, resulting in a thrown exception. This condition is
known as stack overflow. In our example, calling countdown (100000)
requires countdown to call itself 100,000 times, each time pushing
another stack frame, as shown in Figure 7.3. The amount of space
required to store so many stack frames exhausts the space allocated
by most JavaScript environments, leading to a runtime error.

Now take another look at downloadOneAsync. Unlike countdown, which
can't return until the recursive call returns, downloadOneAsync only
calls itself from within an asynchronous callback. Remember that
asynchronous APIs return immediately—before their callbacks are
invoked. So downloadOneAsync returns, causing its stack frame to be
popped off of the call stack, before any recursive call causes a new
stack frame to be pushed back on the stack. (In fact, the callback is
always invoked in a separate turn of the event loop, and each turn of
the event loop invokes its event handler with the call stack initially

(script start) console.log(e);

hegative(42) return times(e, -1);

abs(42) return e;

Math.abs(42) [built-in code]

Figure 7.2 A call stack during the execution of a simple program

186 Chapter 7 Concurrency

(script start) console.log(e);

countdown (100000) return countdown(e);

countdown (99999) return countdown(e);
countdown (99998) return countdown(e);
countdown (1) return countdown(e);
countdown (0) return "done";

Figure 7.3 A call stack during the execution of a recursive function

empty.) So downloadOneAsync never starts eating up call stack space,
no matter how many iterations it requires.

Things to Remember

+ Loops cannot be asynchronous.

+ Use recursive functions to perform iterations in separate turns of
the event loop.

+ Recursion performed in separate turns of the event loop does not
overflow the call stack.

Item 65: Don’t Block the Event Queue on Computation

Item 61 explains how asynchronous APIs help to prevent a program
from clogging up an application’s event queue. But this is not the
whole story. After all, as every programmer can tell you, it's easy
enough to stall an application without even a single function call:

while (true) { }

And it doesn't take an infinite loop to write a sluggish program. Code
takes time to run, and inefficient algorithms or data structures can
lead to long-running computations.

Item 65: Don't Block the Event Queue on Computation 187

Of course, efficiency is not a concern that’s unique to JavaScript. But
event-based programming does impose particular constraints. In
order to preserve a high degree of interactivity in a client application,
or to ensure that all incoming requests get adequately serviced in a
server application, it’s critical to keep each turn of the event loop as
short as possible. Otherwise, the event queue can start getting backed
up, growing at a faster rate than event handlers can be dispatched to
shrink it again. In the browser setting, expensive computations also
lead to a bad user experience, since a page’s user interface is mostly
unresponsive while JavaScript code is running.

So what can you do if your application needs to perform expensive
computations? There’s no one right answer, but there are a few com-
mon techniques available. Perhaps the simplest approach is to use
a concurrency mechanism like the web client platform’s Worker API.
This can be a good approach for games with artificial intelligence
that may need to search through a large space of possible moves. The
game might start up by spawning a dedicated worker for computing
moves:

var ai = new Worker("ai.js");

This has the effect of spawning a new concurrent thread of execution
with its own separate event queue, using the source file ai.js as the
worker’s script. The worker runs in a completely isolated state: It has
no direct access to any of the objects of the application. However, the
application and worker can communicate with each other by sending
messages to each other, in the form of strings. So whenever the game
requires the computer to make a move, it can send a message to the
worker:

var userMove = /* ... */;

ai.postMessage(JSON.stringify({
userMove: userMove

s

The argument to postMessage is added to the worker’s event queue as
a message. To process responses from the worker, the game registers
an event handler:

ai.onmessage = function(event) {
executeMove (JSON.parse(event.data).computerMove);

1

Meanwhile, the source file ai.js instructs the worker to listen for mes-
sages and perform the work required to compute next moves:

188 Chapter 7 Concurrency

self.onmessage = function(event) {
// parse the user move
var userMove = JSON.parse(event.data).userMove;

// generate the next computer move
var computerMove = computeNextMove(userMove);

// format the computer move
var message = JSON.stringify({
computerMove: computerMove

b;

self.postMessage(message);

};

function computeNextMove(userMove) {
/ey
}

Not all JavaScript platforms provide an API like Worker. And some-
times the overhead of passing messages can become too costly. A dif-
ferent approach is to break up an algorithm into multiple steps, each
consisting of a manageable chunk of work. Consider the work-list
algorithm from Item 48 for searching a social network graph:

Member.prototype.inNetwork = function(other) {
var visited = {};
var worklist = [this];
while (workTist.Tlength > 0) {
var member = worklist.pop(Q);
/) ..
if (member === other) { // found?
return true;
}
Y/ane
}
return false;

}s

If the while loop at the heart of this procedure is too expensive, the
search might block the application event queue for unacceptably long
periods of time. Even if the Worker API is available, it might be expen-
sive or inconvenient to implement, since it requires either copying the
entire state of the network graph or storing the graph state in a worker
and always using message passing to update and query the network.

Item 65: Don’t Block the Event Queue on Computation 189

Luckily, the algorithm is defined as a sequence of individual steps:
the iterations of the while loop. We can convert inNetwork to an asyn-
chronous function by adding a callback parameter and, as described
in Item 64, replacing the while loop with an asynchronous, recursive
function:

Member.prototype.inNetwork = function(other, callback) {
var visited = {};
var worklist = [this];
function next() {

if (workTlist.length === 0) {
callback(false);
return;

}

var member = worklist.pop(Q);

VAT

if (member === other) { // found?
callback(true);
return;

}

Y/

setTimeout(next, 0); // schedule the next iteration
}
setTimeout(next, 0); // schedule the first iteration
3

Let’s examine in detail how this code works. In place of the while loop,
we’'ve written a local function called next, which has the responsibil-
ity of performing a single iteration of the loop and then scheduling the
next iteration to run asynchronously in the application event queue.
This allows other events that have occurred in the meantime to be
processed before continuing with the next iteration. When the search
is complete, by either finding a match or exhausting the work-list, we
call the callback with the result value and effectively complete the
loop by returning from next without scheduling anymore iterations.

To schedule iterations, we are using the common setTimeout API,
available in multiple JavaScript platforms, for registering next to run
after a minimal amount of elapsed time (0O milliseconds). This has
the effect of adding the callback to the event queue almost right away.
It's worth noting that while setTimeout is relatively portable across
platforms, there’s often a better alternative available. In the browser
setting, for example, it’s actually throttled to a minimum timeout of
4 milliseconds, and there are alternatives using postMessage that
enqueue an event immediately.

190 Chapter 7 Concurrency

If performing only one iteration of the algorithm in each turn of the
application event queue is overkill, we can tune the algorithm to
perform a customized number of iterations per turn. This is easily
accomplished with a simple counter loop surrounding the main por-
tion of next:

Member.prototype.inNetwork = function(other, callback) {
VAR
function next() {
for (var i = 0; i < 10; 1i++) {
Y/
}

setTimeout(next, 0);

}

setTimeout(next, 0);

s
Things to Remember

+ Avoid expensive algorithms in the main event queue.

+ On platforms that support it, the Worker API can be used for run-
ning long computations in a separate event queue.

+ When the Worker API is not available or is too costly, consider break-
ing up computations across multiple turns of the event loop.

Item 66: Use a Counter to Perform Concurrent
Operations

Item 63 suggested the utility function downloadAllAsync to take an
array of URLs and download them all, returning the array of file
contents, one string per URL. Besides cleaning up nested callbacks,
downloadAllAsync’s primary benefit is downloading files concurrently:
Instead of waiting for each file to finish downloading, we can initiate
all the downloads at once, in a single turn of the event loop.

Concurrent logic is subtle and easy to get wrong. Here is an imple-
mentation with a devious little flaw:

function downloadAlTAsync(urls, onsuccess, onerror) {
var result = [], Tength = urls.length;

if (length === 0) {
setTimeout(onsuccess.bind(null, result), 0);
return;

Item 66: Use a Counter to Perform Concurrent Operations 191

urls.forEach(function(url) {
downloadAsync(url, function(text) {
if (result) {
// race condition
result.push(text);
if (result.length === urls.length) {
onsuccess(result);
}
}
}, function(error) {
if (result) {
result = null;
onerror(error);
}
s
s
}

This function has a serious bug, but first let’s look at how it works.
We start by ensuring that if the input array is empty, the callback
is invoked with an empty result array—if we didn't, neither of the
two callbacks would ever be invoked, since the forEach loop would
be empty. (Item 67 explains why we call setTimeout to invoke the
onsuccess callback instead of calling it directly.) Next, we iterate over
the URL array, requesting an asynchronous download for each. For
each successful download, we add the file contents to the result array;
if all URLs have been successfully downloaded, we call the onsuccess
callback with the completed result array. If any download fails, we
invoke the onerror callback with the error value. In case of multiple
failed downloads, we also set the result array to null to make sure
that onerror is only called once, for the first error that occurs.

To see what goes wrong, consider a use such as this:

var filenames = [
"huge.txt", // huge file
"tiny.txt", // tiny file
"medium.txt" // medium-sized file

1;

downloadAl11Async(filenames, function(files) {
console.log("Huge file: " + files[0].length); // tiny
console.log("Tiny file: " + files[1].length); // medium
console.log("Medium file: " + files[2].length); // huge

}, function(error) {
console.log("Error:

b;

+ error);

192 Chapter 7 Concurrency

Since the files are downloaded concurrently, the events can occur (and
consequently be added to the application event queue) in arbitrary
orders. If, for example, tiny.txt completes first, followed by medium.txt
and then huge.txt, the callbacks installed in downloadAlT1Async will
be called in a different order than the order they were created in.
But the implementation of downloadAllAsync pushes each interme-
diate result onto the end of the result array as soon as it arrives.
So downloadAl1Async produces an array containing downloaded files
stored in an unknown order. It’s almost impossible to use an API
like that correctly, because the caller has no way to figure out which
result is which. The example above, which assumes the results are
in the same order as the input array, will fail completely in this case.

Item 48 introduced the idea of nondeterminism: unspecified behavior
that programs cannot rely on without behaving unpredictably. Con-
current events are the most important source of nondeterminism in
JavaScript. Specifically, the order in which events occur is not guaran-
teed to be the same from one execution of an application to the next.

When an application depends on the particular order of events to
function correctly, the application is said to suffer from a data race:
Multiple concurrent actions can modify a shared data structure dif-
ferently depending on the order in which they occur. (Intuitively, the
concurrent operations are “racing” against one another to see who
will finish first.) Data races are truly sadistic bugs: They may not
even show up in a particular test run, since running the same pro-
gram twice may result in different behavior each time. For example,
the user of downloadAl1Async might try to reorder the files based on
which was more likely to download first:

downToadAl1TAsync(filenames, function(files) {
console.log("Huge file: " + files[2].length);
console.log("Tiny file: " + files[0].length);
console.log("Medium file: " + files[1l].length);

}, function(error) {
console.log("Error:

b;

In this case, the results might arrive in the same order most of the
time, but from time to time, due perhaps to changing server loads or
network caches, the files might not arrive in the expected order. These
tend to be the most challenging bugs to diagnose, because they’re so
difficult to reproduce. Of course, we could go back to downloading
the files sequentially, but then we lose the performance benefits of
concurrency.

+ error);

Item 66: Use a Counter to Perform Concurrent Operations 193

The solution is to implement downloadAl1Async so that it always pro-
duces predictable results regardless of the unpredictable order of
events. Instead of pushing each result onto the end of the array, we
store it at its original index:

function downloadATTAsync(urls, onsuccess, onerror) {
var Tength = urls.length;
var result = [];

if (Tength === 0) {
setTimeout(onsuccess.bind(null, result), 0);
return;

}

urls.forEach(function(url, i) {
downloadAsync(url, function(text) {
if (result) {
result[i] = text; // store at fixed index

// race condition
if (result.length === urls.length) {
onsuccess(result);
}
}

}, function(error) {
if (result) {
result = null;
onerror(error);
3
1
B
}

This implementation takes advantage of the forEach callback’s second
argument, which provides the array index for the current iteration.
Unfortunately, it’s still not correct. Item 51 describes the contract of
array updates: Setting an indexed property always ensures that the
array’s length property is greater than that index. Imagine a request
such as:

downloadA11Async(["huge.txt", "medium.txt", "tiny.txt"]);

If the file tiny.txt finishes loading before one of the other files,
the result array will acquire a property at index 2, which causes
result.length to be updated to 3. The user’s success callback will
then be prematurely called with an incomplete array of results.

194 Chapter 7 Concurrency

The correct implementation uses a counter to track the number of
pending operations:

function downloadATTAsync(urls, onsuccess, onerror) {
var pending = urls.length;
var result = [];

if (pending === 0) {
setTimeout(onsuccess.bind(null, result), 0);
return;

}

urls.forEach(function(url, i) {
downloadAsync(url, function(text) {
if (result) {
result[i] = text; // store at fixed index

pending--; // register the success
if (pending === 0) {

onsuccess(result);
}

}
}, function(error) {
if (result) {
result = null;
onerror(error);
}
s
s
}
Now no matter what order the events occur in, the pending counter
accurately indicates when all events have completed, and the com-
plete results are returned in the proper order.

Things to Remember

+ Events in a JavaScript application occur nondeterministically, that
is, in unpredictable order.

+ Use a counter to avoid data races in concurrent operations.

Item 67: Never Call Asynchronous Callbacks
Synchronously

Imagine a variation of downloadAsync that keeps a cache (implemented
as a Dict—see Item 45) to avoid downloading the same file multiple

Item 67: Never Call Asynchronous Callbacks Synchronously 195

times. In the cases where the file is already cached, it’s tempting to
invoke the callback immediately:

var cache = new Dict();

function downloadCachingAsync(url, onsuccess, onerror) {

if (cache.has(ur1)) {
onsuccess(cache.get(url)); // synchronous call
return;

}

return downloadAsync(url, function(file) {
cache.set(url, file);
onsuccess(file);

}, onerror);

}

As natural as it may seem to provide data immediately if it's available,
this violates the expectations of an asynchronous API’s clients in sub-
tle ways. First of all, it changes the expected order of operations. Item
62 showed the following example, which for a well-behaved asynchro-
nous API should always log messages in a predictable order:

downToadAsync("file.txt", function(file) {
console.log("finished");

b;

console.log("starting");

With the naive implementation of downloadCachingAsync above, such
client code could end up logging the events in either order, depending
on whether the file has been cached:

downloadCachingAsync("file.txt", function(file) {
console.log("finished"); // might happen first
s

console.log("starting");

The order of logging messages is one thing. More generally, the pur-
pose of asynchronous APIs is to maintain the strict separation of
turns of the event loop. As Item 61 explains, this simplifies concur-
rency by alleviating code in one turn of the event loop from having
to worry about other code changing shared data structures concur-
rently. An asynchronous callback that gets called synchronously vio-
lates this separation, causing code intended for a separate turn of the
event loop to execute before the current turn completes.

For example, an application might keep a queue of files remaining to
download and display a message to the user:

196 Chapter 7 Concurrency

downloadCachingAsync(remaining[0], function(file) {
remaining.shift(Q);
VA

s

status.display("Downloading " + remaining[0] + "...");

If the callback is invoked synchronously, the display message will
show the wrong filename (or worse, "undefined" if the queue is empty).

Invoking an asynchronous callback can cause even subtler prob-
lems. Item 64 explains that asynchronous callbacks are intended to
be invoked with an essentially empty call stack, so it’s safe to imple-
ment asynchronous loops as recursive functions without any dan-
ger of accumulating unbounded call stack space. A synchronous call
negates this guarantee, making it possible for an ostensibly asyn-
chronous loop to exhaust the call stack space. Yet another issue is
exceptions: With the above implementation of downloadCachingAsync,
if the callback throws an exception, it will be thrown in the turn of
the event loop that initiated the download, rather than in a separate
turn as expected.

To ensure that the callback is always invoked asynchronously, we can
use an existing asynchronous API. Just as we did in Items 65 and 66,
we use the common library function setTimeout to add a callback to
the event queue after a minimum timeout. There may be preferable
alternatives to setTimeout for scheduling immediate events, depend-
ing on the platform.

var cache = new Dict(Q);

function downloadCachingAsync(url, onsuccess, onerror) {

if (cache.hasCur1l)) {
var cached = cache.get(url);
setTimeout(onsuccess.bind(null, cached), 0);
return;

}

return downloadAsync(url, function(file) {
cache.set(url, file);
onsuccess(file);

}, onerror);

}

We use bind (see Item 25) to save the result as the first argument for
the onsuccess callback.

Item 68: Use Promises for Cleaner Asynchronous Logic 197

Things to Remember

+ Never call an asynchronous callback synchronously, even if the
data is immediately available.

+ Calling an asynchronous callback synchronously disrupts the
expected sequence of operations and can lead to unexpected inter-
leaving of code.

+ Calling an asynchronous callback synchronously can lead to stack
overflows or mishandled exceptions.

+ Use an asynchronous API such as setTimeout to schedule an asyn-
chronous callback to run in another turn.

Item 68: Use Promises for Cleaner Asynchronous Logic

A popular alternative way to structure asynchronous APIs is to
use promises (sometimes known as deferreds or futures). The asyn-
chronous APIs we've discussed in this chapter take callbacks as
arguments:

downloadAsync("file.txt", function(file) {
console.log("file: " + file);

b;

By contrast, a promise-based API does not take callbacks as argu-
ments; instead, it returns a promise object, which itself accepts call-
backs via its then method:

var p = downloadP("file.txt");

p.then(function(file) {
console.log("file: " + file);

s

So far this hardly looks any different from the original version. But
the power of promises is in their composability. The callback passed
to then can be used not only to cause effects (in the above example, to
print out to the console), but also to produce results. By returning a
value from the callback, we can construct a new promise:

var fileP = downloadP("file.txt");
var lengthP = fileP.then(function(file) {

return file.length;

s

198 Chapter 7 Concurrency

TengthP.then(function(length) {
console.log("length: " + Tength);

s

One way to think about a promise is as an object that represents an
eventual value—it wraps a concurrent operation that may not have
completed yet, but will eventually produce a result value. The then
method allows us to take one promise object that represents one type
of eventual value and generate a new promise object that represents
another type of eventual value—whatever we return from the callback.

This ability to construct new promises from existing promises gives
them great flexibility, and enables some simple but very powerful idi-
oms. For example, it’s relatively easy to construct a utility for “joining”
the results of multiple promises:

var filesP = join(downloadP("filel.txt"),
downloadP("file2.txt"),
downToadP("file3.txt"));

filesP.then(function(files) {
console.log("filel: " + files[0]);
console.log("file2: " + files[1]);
console.log("file3: " + files[2]);

s

Promise libraries also often provide a utility function called when,
which can be used similarly:

var filePl = downloadP("filel.txt"),
fileP2 = downloadP("file2.txt"),
fileP3 = downloadP("file3.txt");

when([fileP1l, fileP2, fileP3], function(files) {
console.log("filel: " + files[0]);
console.log("file2: " + files[1]);
console.log("file3: " + files[2]);

s

Part of what makes promises an excellent level of abstraction is that
they communicate their results by returning values from their then
methods, or by composing promises via utilities such as join, rather
than by writing to shared data structures via concurrent callbacks.
This is inherently safer because it avoids the data races discussed
in Item 66. Even the most conscientious programmer can make sim-
ple mistakes when saving the results of asynchronous operations in
shared variables or data structures:

Item 68: Use Promises for Cleaner Asynchronous Logic 199

var filel, file2;

downloadAsync("filel.txt", function(file) {
filel = file;
B

downToadAsync("file2.txt", function(file) {
filel = file; // wrong variable
¥

Promises avoid this kind of bug because the style of concisely com-
posing promises avoids modifying shared data.

Notice also that sequential chains of asynchronous logic actually
appear sequential with promises, rather than with the unwieldy nest-
ing patterns demonstrated in Item 62. What’s more, error handling is
automatically propagated through promises. When you chain a col-
lection of asynchronous operations together through promises, you
can provide a single error callback for the entire sequence, rather
than passing an error callback to every step as in the code in Item 63.

Despite this, it is sometimes useful to create certain kinds of races
purposefully, and promises provide an elegant mechanism for doing
this. For example, an application may need to try downloading the
same file simultaneously from several different servers and take
whichever one completes first. The select (or choose) utility takes
several promises and produces a promise whose value is whichever
result becomes available first. In other words, it “races” several prom-
ises against one another.

var fileP = select(downloadP("http://examplel.com/file.txt"),
downToadP("http://example2.com/file.txt"),
downToadP("http://example3.com/file.txt"));

fileP.then(function(file) {
console.log("file: " + file);

b;

Another use of select is to provide timeouts to abort operations that
take too long:

var fileP = select(downloadP("file.txt"), timeoutErrorP(2000));

fileP.then(function(file) {
console.log("file: " + file);

}, function(error) {
console.log("I/0 error or timeout:

b;

+ error);

200 Chapter 7 Concurrency

In that last example, were demonstrating the mechanism for provid-
ing error callbacks to a promise as the second argument to then.
Things to Remember

+ Promises represent eventual values, that is, concurrent computa-
tions that eventually produce a result.

+ Use promises to compose different concurrent operations.
+ Use promise APIs to avoid data races.

4+ Use select (also known as choose) for situations where an inten-
tional race condition is required.

Symbols

* 10

~, 10

(, 25

11, 151

==, 15-19

===, 17, 19

$, 169

%, 10

&, 10

&&, 13

+, 10, 12-14, 17, 25
++, 24-25

-, 10, 25

--, 24-25

., 28

<<, 10

>>, 10

>>>, 10

/. 25

7, 19-25

A, 10

. 10

[l, 13, 147, 151, 153
¢, 185-186

, (expression sequencing operator), 55
[1,25, 107

A

Actors, 101

Actual argument, 67
add, 160-163
addChild, 96-97
addClass, 169
addEntry, 65

ai.js, 187-188
allKeys, 125-126

Index

Anonymous function expressions, 41,
47-50, 60, 74
append, 66-67
apply, 65-67
Argument creep, 149
Arguments
options object, 149-153
order, 143-144
self-documenting, 149
and variadic functions, 67-72
arguments object, 3-5, 46, 67-72, 79-81,
138-140, 146, 148
Arithmetic operators, 7, 10
Array [[Class]], 107-109
Array constructor, 140-141
Array.isArray, 162
Array-like objects, 138-140, 160-164,
166
Array.prototype, 110-111
Arrays, 113-116, 123-125
associative, 114
concatenation, 139-140
every method, 137-138
filter method, 111, 135, 168
forEach method, 21, 72-73, 75, 108,
111, 128, 130-131, 134-138,
162, 191, 193-194
iteration, 132-138
literals, 140-141
map method, 61, 74-75, 98-100, 111,
134-135, 137, 139, 168
some method, 137-138
testing, 162-163
Asynchronous APIs, 171-175, 182
Asynchronous callbacks, 194-197
Asynchronous loops, 183-186
Automatic semicolon insertion, 19, 24

202 Index

B

Backward compatibility, 3

Basic Multilingual Plane (BMP), 26-28
bind, 72-75, 177

Binding occurrence, 99-100

Bit vectors, 160, 165

Bitwise arithmetic operators, 7-8, 10
Block scoping, 42

Blocking APIs, 174-175

Blocking function, 172

Block-local functions, 50-52
Boolean [[Class]], 108-109

break, 24-25

buffer, 66-67, 72-74

Bullet symbol (), 185-186

C
Cached files, 195-197
call, 63-65, 119-122, 138-140
Call stack, 184-186
Call stack inspection, 79-81
Callback function, 60, 62, 65, 72-73,
99-100, 175-179
Chainable API, 168-169
checkPassword, 84-86, 92-93, 95
choose, 199
[[Class]] internal property, 107-109
Classes, 86-87
Closures, 39-41, 75-77, 94-95, 176
Code point, 25-29
Code unit, 26-29
Coercion, 9-14, 18, 164-167
Comma-separated values (CSV), 98-100
Comments, 149
concat, 139-140
Concatenation, 3-5, 22-23, 139-140
Concurrency
asynchronous callbacks, 194-197
counter and data race, 190-194
error handling, 179-183
event queue, 172-175, 186-190
nested callbacks, 175-179
promises, 197-200
recursion, 183-186
const, 2
constructor, 140-141
Constructors, 57-59, 91
Context (graphics), 101
continue, 24-25
Countdown, 184-186
Counter and data race, 190-194
C.prototype, 83, 87

CSV (comma-separated values),
98-100

Curry, Haskell, 75

Currying, 75

D

Data race, 192, 198

Date [[Class]], 106, 108-109

Debugging, 48, 105, 182

decodeURI, 28

decodeURIcomponent, 28

Defensive programming, 165

Deferreds, 197

Diagnostic information, 105

Dict, 118-122, 130, 195-196

Dictionaries, 113-116, 123-125

Direct eval, 54-55

displayPage, 157-159

“Do what I mean” semantics, 17

Double negation pattern (!!), 151

Double-precision floating-point, 7-9

downloadAllAsync, 178-179, 181-182,
190-194

downloadAsync, 173-178, 180-184, 195

downloadCachingAsync, 195-196

downloadFiles, 177-178

downloadOneAsync, 183-186

downloadOneSync, 183

downloadSync, 172

downloadURL, 177

Dropped errors, 179-183

Duck testing, 161

Duck typing, 159

Duplicate code, 61, 180

Dynamic typing, 159

E

ECMAScript standard, 1-2, 19, 28, 55,
77, 106-108

Edition 5 (ES5), 1, 3, 134-135, 162

enable, 160-165

encodeURI, 28

encodeURIcomponent, 28

Enumerable properties, 125-127

Enumeration, 114-117, 123-132

Error [[Class]], 108-109

Error-handling callbacks, 180-181

Errors, 179-183

Escape sequences, 168

eval function, 52-55

Event loop, 173

Event queue, 171, 172-175, 186-190

Event-loop concurrency, 171

Eventual values, 198-200

every, 137-138

Exceptions, 44, 136, 179-180, 196-197
Expression sequencing operator (,), 55
extend function, 151-153

F
Falsy, 13-14
filter, 111, 135, 168
fi11Text, 154-155
Fixed-arity, 65, 67-68
Floating-point arithmetic, 124
Floating-point numbers, 7-9
Fluent style, 169
for loop, 24-25, 132-134
forEach, 21, 64-65, 72-73, 75, 108, 111,
128, 130-131, 134-138, 162, 191,
193-194
for...in loop, 113-116, 128-129, 132
Formal parameter, 67
Formatters, 157-159
Function [[Class]], 106, 108-109
Function declaration, 47
Function expression, 41, 47-50
Functions, 57-59
apply method, 65-67
arguments object, 3-5, 46, 67-72,
79-81, 138-140, 146, 148
bind method, 72-75, 177
call method, 63-65, 119-122,
138-140
call stack inspection, 79-81
closures, 75-77
higher-order, 60-63
toString method, 77-78
Futures, 197

G

Generic array methods, 138-140
getAuthor, 157-159

getCallStack, 79-80

getTitle, 157-159

Global variables, 31-34

guard, 165-167

H

hasOwnProperty, 64, 109, 115-122
Height/width, 143-144, 150
Higher-order functions, 60-63
highlight, 145-146

Hoisting, 42-44

Index 203

hostname, 147
html method, 169

I

Identification number, 105-106

Image data, 102

Immediately invoked function
expressions (IIFE), 5, 6, 44-46

Implementation inheritance, 83, 109

Implicit binding, 98-100

Implicit coercions, 9-14

Index, 138-139

Indirect eval, 54-55

Inheritance, 83-85, 89, 104, 108-109,
118, 158-159

ini object, 155-156

inNetwork, 189

Instance properties, 103

Instance state, 95-98

instanceof operator, 162

Integer addition, 125

Introspection, 109

isNaN, 11

isReallyNaN, 12

Iterator, 70-71

J

join, 198

jQuery, 169

JSON [[Class]], 108
JSON data format, 33

L

Last-in, first out, 185-186
Tength, 132-133, 138-139, 166
Lexical environment, 36-37
Lexical scope, 42, 122

Library, 143-144

Lightweight dictionaries, 113-116
Tine.split, 99-100

lint tools, 34-35

Literals, 140-141

Local variables, 34-35, 52-54
Logical OR operator (||), 147, 150-151
Lookup, 118-119

Loops, 183-186

M

map, 61, 74-75, 98-100, 111, 134-135,
137, 139, 168

Math [[Class]], 108

me, 100

204 Index

MediaWiki, 157-158
Merging function, 151
Methods, 58-59

chaining, 167-170

storing on prototypes, 92-94
Mock object, 159
modal, 149-152
Module systems, 6
Monkey-patching, 110-111
moveTo, 102

N

Named function expression, 47
Naming conventions, 143-144
NaN (not a number), 11

Nested callbacks, 175-179
Nested function declaration, 52
Nested functions, 71-72

new, 59, 83, 89-91

newline, 19, 24-25

next, 189

Node.js, 181

NodeList, 138-140
Nonblocking APIs, 172
Nondeterminism, 130-132, 192
Nonstandard features, 2-3
null, 146

Number [[Class]], 108

(0]
Object [[Class]], 108
Object extension function, 151-153
Object introspection, 109
Objects as scopes, 49
Object wrappers, 15-16
Object.create, 89-91, 103-105, 116-117
Object.defineProperty, 126-127
Object.getPrototype0Of, 83-88, 109
Object.prototype, 115-116, 118-122,
125-127
Objects, 127-132, 138-140
hasOwnProperty method, 64, 109,
115-122
toString method, 12-14, 17-18, 107,
163
Operators
arithmetic, 7, 10, 21
bitwise, 8-9, 166
bitwise arithmetic, 10
expression sequencing (,), 55
typeof, 7, 14, 165-166
Optional arguments, 149-150

Options object, 149-153

or, 166-167

Order dependencies, 123-125
Overloading structural types, 161

P
Page class, 158-159
pick, 130-131
Pollution of objects, 87
Polyfill, 111
Positional arguments, 149-150
postMessage, 187-189
Predicates, 135, 137
Primitives, 15-18
Private data, 94-95, 106
Profiling, 105
Promises, 197-200
Property descriptor map, 116-117
Property names, 105-106
__proto__, 83-84, 86-89, 109, 117, 121
Prototype pollution, 115-122
Prototypes
C.prototype, 83, 87
as implementation detail, 109-110
instance state, 95-98
Object.getPrototypeOf, 83-88
__proto__, 83-84, 86-89, 109, 117,
121
storing methods on, 92-94

q

Querying web pages, 169

R

Radix, 8

Receiver, 58-59, 63-65, 72-73
Recursion, 183-186

RegExp, 108-109

removeClass, 169

replace, 167-168

Restricted productions, 24

return, 24-25, 91

Run-to-completion guarantee, 172, 175

Scene graph, 101
Scope, 31
anonymous and named function
expressions, 47-50
block-local functions, 50-52
closures, 39-41
eval function, 52-55

global variables, 31-34
hoisting, 42-44
immediately invoked function
expressions (IIFE), 5, 6, 44-46
local variables, 34-35
with statement, 35-39
Scope chain, 36
Security, 79, 94-95
select, 199-200
self, 90-91, 100, 167
Self-documenting arguments, 149
Semicolon, 19-25
setSection, 155-156
setTimeout, 189-191, 196
shift, 68-69
Shift operators, 10
Short-circuiting methods, 137
Single character pattern, 28
slice, 70, 140
some, 137-138
sort, 60
Source object, 151-153
split, 110
Stack inspection, 79-81
Stack overflow, 185
Stack trace, 79-81
State
instance state, 95-98
stateful API, 154-155, 169
stateless API, 153-156, 167-169
Strict equality, 17-18
Strict mode, 3-6, 51, 69-70
String, 15-16
String characters, replacing, 167-169
String [[Class]], 108-109
String literal, 3
String sets, 160-163
Strings, 75-76
Structural types, 161
Structural typing, 159
Subclass constructors, 101-105
Superclass constructors, 101-105
Superclass property names, 105-106
Supplementary plane, 27
Surrogate pair, 27-29
Synchronous function, 172

T

takeWhile, 135-137
Target object, 151-153
Termination, 133-134
Text formatting, 156, 159

Index

that, 100

then, 197-199

32-bit integers, 7, 10

this, 58-59, 66, 98-100, 169

Threads, 172

throw, 24-25

toHTML, 157-159

Tokens, 20-22, 25

toString, 7-8, 12-14, 17-18, 77-78,
84-86, 92-95, 153, 167

trimSections, 42-43

true, 146

Truthiness, 13, 147-149

Truthy, 13, 135, 137, 147

try, 179, 182

tryNextURL, 183-184

Type errors, 9, 12

TypeError, 90, 108

typeof, 7, 14, 165-166

U

UCS-2, 26-27

uint32, 166

Unary operator, 17

undefined, 11, 14, 144-151, 169
Underscore character, 94
Unicode, 25-29

use strict, 3-6

User class, 86

User.prototype, 84-87, 90-91, 93
UTF-8, 26

UTF-16, 26-28

UTF-32, 26

Vv

val, 41

valueOf, 12-14, 16-18

var, 22, 32-35, 42-53

Variable hoisting, 42-44
Variable-arity function, 65-66, 68
Variable-length encoding, 27
Variadic function, 65-66, 68

w

Web development practices, 144
when, 198

while loop, 130-132, 188-189
Width/height, 143-144, 150
Wiki formatter, 157

Wiki library, 156-160

with statement, 35-39

Worker, 187-188

205

206 Index

Work-list, 131 X
Work-set, 127-131 x and y, 38, 104, 150, 152
wrapElements, 44-46 XMLHttpRequest library, 174-175

This page intentionally left blank

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1: Accustoming Yourself to JavaScript
	Item 1: Know Which JavaScript You Are Using
	Item 2: Understand JavaScript’s Floating-Point Numbers
	Item 3: Beware of Implicit Coercions
	Item 4: Prefer Primitives to Object Wrappers
	Item 5: Avoid using == with Mixed Types
	Item 6: Learn the Limits of Semicolon Insertion
	Item 7: Think of Strings As Sequences of 16-Bit Code Units

	Chapter 2: Variable Scope
	Item 8: Minimize Use of the Global Object
	Item 9: Always Declare Local Variables
	Item 10: Avoid with
	Item 11: Get Comfortable with Closures
	Item 12: Understand Variable Hoisting
	Item 13: Use Immediately Invoked Function Expressions to Create Local Scopes
	Item 14: Beware of Unportable Scoping of Named Function Expressions
	Item 15: Beware of Unportable Scoping of Block-Local Function Declarations
	Item 16: Avoid Creating Local Variables with eval
	Item 17: Prefer Indirect eval to Direct eval

	Chapter 3: Working with Functions
	Item 18: Understand the Difference between Function, Method, and Constructor Calls
	Item 19: Get Comfortable Using Higher-Order Functions
	Item 20: Use call to Call Methods with a Custom Receiver
	Item 21: Use apply to Call Functions with Different Numbers of Arguments
	Item 22: Use arguments to Create Variadic Functions
	Item 23: Never Modify the arguments Object
	Item 24: Use a Variable to Save a Reference to arguments
	Item 25: Use bind to Extract Methods with a Fixed Receiver
	Item 26: Use bind to Curry Functions
	Item 27: Prefer Closures to Strings for Encapsulating Code
	Item 28: Avoid Relying on the toString Method of Functions
	Item 29: Avoid Nonstandard Stack Inspection Properties

	Chapter 4: Objects and Prototypes
	Item 30: Understand the Difference between prototype, getPrototypeOf, and__proto__
	Item 31: Prefer Object.getPrototypeOf to __proto__
	Item 32: Never Modify __proto__
	Item 33: Make Your Constructors new-Agnostic
	Item 34: Store Methods on Prototypes
	Item 35: Use Closures to Store Private Data
	Item 36: Store Instance State Only on Instance Objects
	Item 37: Recognize the Implicit Binding of this
	Item 38: Call Superclass Constructors from Subclass Constructors
	Item 39: Never Reuse Superclass Property Names
	Item 40: Avoid Inheriting from Standard Classes
	Item 41: Treat Prototypes As an Implementation Detail
	Item 42: Avoid Reckless Monkey-Patching

	Chapter 5: Arrays and Dictionaries
	Item 43: Build Lightweight Dictionaries from Direct Instances of Object
	Item 44: Use null Prototypes to Prevent Prototype Pollution
	Item 45: Use hasOwnProperty to Protect Against Prototype Pollution
	Item 46: Prefer Arrays to Dictionaries for Ordered Collections
	Item 47: Never Add Enumerable Properties to Object.prototype
	Item 48: Avoid Modifying an Object during Enumeration
	Item 49: Prefer for Loops to for...in Loops for Array Iteration
	Item 50: Prefer Iteration Methods to Loops
	Item 51: Reuse Generic Array Methods on Array-Like Objects
	Item 52: Prefer Array Literals to the Array Constructor

	Chapter 6: Library and API Design
	Item 53: Maintain Consistent Conventions
	Item 54: Treat undefined As “No Value”
	Item 55: Accept Options Objects for Keyword Arguments
	Item 56: Avoid Unnecessary State
	Item 57: Use Structural Typing for Flexible Interfaces
	Item 58: Distinguish between Array and Array-Like
	Item 59: Avoid Excessive Coercion
	Item 60: Support Method Chaining

	Chapter 7: Concurrency
	Item 61: Don’t Block the Event Queue on I/O
	Item 62: Use Nested or Named Callbacks for Asynchronous Sequencing
	Item 63: Be Aware of Dropped Errors
	Item 64: Use Recursion for Asynchronous Loops
	Item 65: Don’t Block the Event Queue on Computation
	Item 66: Use a Counter to Perform Concurrent Operations
	Item 67: Never Call Asynchronous Callbacks Synchronously
	Item 68: Use Promises for Cleaner Asynchronous Logic

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

