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Preface
Functional	programming	is	a	style	that	emphasizes	and	enables	the	writing	of	smarter
code,	which	minimizes	complexity	and	increases	modularity.	It’s	a	way	of	writing	cleaner
code	through	clever	ways	of	mutating,	combining,	and	using	functions.	JavaScript
provides	an	excellent	medium	for	this	approach.	JavaScript,	the	Internet’s	scripting
language,	is	actually	a	functional	language	at	heart.	By	learning	how	to	expose	its	true
identity	as	a	functional	language,	we	can	implement	web	applications	that	are	powerful,
easier	to	maintain,	and	more	reliable.	By	doing	this,	JavaScript’s	odd	quirks	and	pitfalls
will	suddenly	become	clear	and	the	language	as	a	whole	will	make	infinitely	more	sense.
Learning	how	to	use	functional	programming	will	make	you	a	better	programmer	for	life.

This	book	is	a	guide	for	both	new	and	experienced	JavaScript	developers	who	are
interested	in	learning	functional	programming.	With	a	focus	on	the	progression	of
functional	programming	techniques,	styles,	and	detailed	information	about	JavaScript
libraries,	this	book	will	help	you	to	write	smarter	code	and	become	a	better	programmer.



What	this	book	covers
Chapter	1,	The	Powers	of	JavaScript’s	Functional	Side	–	a	Demonstration,	sets	the	pace	of
the	book	by	creating	a	small	web	application	with	the	help	of	both	traditional	methods	and
functional	programming.	It	then	compares	these	two	methods	to	underline	the	importance
of	functional	programming.

Chapter	2,	Fundamentals	of	Functional	Programming,	introduces	you	to	the	core	concepts
of	functional	programming	as	well	as	built-in	JavaScript	functions.

Chapter	3,	Setting	Up	the	Functional	Programming	Environment,	explores	different
JavaScript	libraries	and	how	they	can	be	optimized	for	functional	programming.

Chapter	4,	Implementing	Functional	Programming	Techniques	in	JavaScript,	explains	the
functional	paradigm	in	JavaScript.	It	covers	several	styles	of	functional	programming	and
demonstrates	how	they	can	be	employed	in	different	scenarios.

Chapter	5,	Category	Theory,	explains	the	concept	of	Category	Theory	in	detail	and	then
implements	it	in	JavaScript.

Chapter	6,	Advanced	Topics	and	Pitfalls	in	JavaScript,	highlights	various	drawbacks	you
may	face	while	programming	in	JavaScript,	and	the	various	ways	to	successfully	deal	with
them.

Chapter	7,	Functional	and	Object-oriented	Programming	in	JavaScript,	relates	both
functional	and	object-oriented	programming	to	JavaScript,	and	shows	you	how	the	two
paradigms	can	complement	each	other	and	coexist	side	by	side.

Appendix	A,	Common	Functions	for	Functional	Programming	in	JavaScript,	contains
common	functions	used	to	perform	functional	programming	in	JavaScript.

Appendix	B,	Glossary	of	Terms,	includes	a	glossary	of	terms	used	throughout	the	book.





What	you	need	for	this	book
Only	a	browser	is	needed	to	get	you	up	and	running.





Who	this	book	is	for
If	you	are	a	JavaScript	developer	interested	in	learning	functional	programming,	looking
for	a	quantum	leap	toward	mastering	the	JavaScript	language,	or	just	want	to	become	a
better	programmer	in	general,	then	this	book	is	ideal	for	you.	This	guide	is	aimed	at
programmers	involved	in	developing	reactive	frontend	applications,	server-side
applications	that	wrangle	with	reliability	and	concurrency,	and	everything	else	in	between.





Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

Function.prototype.partialApply	=	function()	{

		var	func	=	this;

		args	=	Array.prototype.slice.call(arguments);

		return	function()	{

				return	func.apply(this,	args.concat(

						Array.prototype.slice.call(arguments)

				));

		};

};

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the	relevant
lines	or	items	are	set	in	bold:

var	messages	=	['Hi',	'Hello',	'Sup',	'Hey',	'Hola'];

messages.map(function(s,i){

		return	printSomewhere(s,	i*10,	i*10);

}).forEach(document.body.appendChild);

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Clicking	the	Next
button	moves	you	to	the	next	screen.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.





Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.





Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.



Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.



Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.



Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.



Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.





Chapter	1.	The	Powers	of	JavaScript’s
Functional	Side	–	a	Demonstration



Introduction
For	decades,	functional	programming	has	been	the	darling	of	computer	science
aficionados,	prized	for	its	mathematical	purity	and	puzzling	nature	that	kept	it	hidden	in
dusty	computer	labs	occupied	by	data	scientists	and	PhD	hopefuls.	But	now,	it	is	going
through	a	resurgence,	thanks	to	modern	languages	such	as	Python,	Julia,	Ruby,	Clojure
and—last	but	not	least—JavaScipt.

JavaScript,	you	say?	The	web’s	scripting	language?	Yes!

JavaScript	has	proven	to	be	an	important	technology	that	isn’t	going	away	for	quite	a
while.	This	is	largely	due	to	the	fact	that	it	is	capable	of	being	reborn	and	extended	with
new	frameworks	and	libraries,	such	as	backbone.js,	jQuery,	Dojo,	underscore.js,	and
many	more.	This	is	directly	related	to	JavaScript’s	true	identity	as	a	functional
programming	language.	An	understanding	of	functional	programming	with	JavaScript
will	be	welcome	and	useful	for	a	long	time	for	programmers	of	any	skill	level.

Why	so?	Functional	programming	is	very	powerful,	robust,	and	elegant.	It	is	useful	and
efficient	on	large	data	structures.	It	can	be	very	advantageous	to	use	JavaScript—a	client-
side	scripting	language,	as	a	functional	means	to	manipulate	the	DOM,	sort	API	responses
or	perform	other	tasks	on	increasingly	complex	websites.

In	this	book,	you	will	learn	everything	you	need	to	know	about	functional	programming
with	JavaScript:	how	to	empower	your	JavaScript	web	applications	with	functional
programming,	how	to	unlock	JavaScript’s	hidden	powers,	and	how	to	write	better	code
that	is	both	more	powerful	and—because	it	is	smaller—easier	to	maintain,	faster	to
download,	and	takes	less	overhead.	You	will	also	learn	the	core	concepts	of	functional
programming,	how	to	apply	them	to	JavaScript,	how	to	side-step	the	caveats	and	issues
that	may	arise	when	using	JavaScript	as	a	functional	language,	and	how	to	mix	functional
programming	with	object-oriented	programming	in	JavaScript.

But	before	we	begin,	let’s	perform	an	experiment.





The	demonstration
Perhaps	a	quick	demonstration	will	be	the	best	way	to	introduce	functional	programming
with	JavaScript.	We	will	perform	the	same	task	using	JavaScript—once	using	traditional,
native	methods,	and	once	with	functional	programming.	Then,	we	will	compare	the	two
methods.





The	application	–	an	e-commerce	website
In	pursuit	of	a	real-world	application,	let’s	say	we	need	an	e-commerce	web	application
for	a	mail-order	coffee	bean	company.	They	sell	several	types	of	coffee	and	in	different
quantities,	both	of	which	affect	the	price.



Imperative	methods
First,	let’s	go	with	the	procedural	route.	To	keep	this	demonstration	down	to	earth,	we’ll
have	to	create	objects	that	hold	the	data.	This	allows	the	ability	to	fetch	the	values	from	a
database	if	we	need	to.	But	for	now,	we’ll	assume	they’re	statically	defined:

//	create	some	objects	to	store	the	data.

var	columbian	=	{

		name:	'columbian',

		basePrice:	5

};

var	frenchRoast	=	{

		name:	'french	roast',

		basePrice:	8

};

var	decaf	=	{

		name:	'decaf',

		basePrice:	6

};

//	we'll	use	a	helper	function	to	calculate	the	cost	

//	according	to	the	size	and	print	it	to	an	HTML	list

function	printPrice(coffee,	size)	{

		if	(size	==	'small')	{

				var	price	=	coffee.basePrice	+	2;

		}

		else	if	(size	==	'medium')	{

				var	price	=	coffee.basePrice	+	4;

		}

		else	{

				var	price	=	coffee.basePrice	+	6;

		}

//	create	the	new	html	list	item

		var	node	=	document.createElement("li");

		var	label	=	coffee.name	+	'	'	+	size;

		var	textnode	=	document.createTextNode(label+'	price:	$'+price);

		node.appendChild(textnode);

		document.getElementById('products').appendChild(node);

}

//	now	all	we	need	to	do	is	call	the	printPrice	function

//	for	every	single	combination	of	coffee	type	and	size

printPrice(columbian,	'small');

printPrice(columbian,	'medium');

printPrice(columbian,	'large');

printPrice(frenchRoast,	'small');

printPrice(frenchRoast,	'medium');

printPrice(frenchRoast,	'large');

printPrice(decaf,	'small');

printPrice(decaf,	'medium');

printPrice(decaf,	'large');

Tip



Downloading	the	example	code

You	can	download	example	code	files	for	all	Packt	books	you	have	purchased	from	your
account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

As	you	can	see,	this	code	is	very	basic.	What	if	there	were	many	more	coffee	styles	than
just	the	three	we	have	here?	What	if	there	were	20?	50?	What	if,	in	addition	to	size,	there
were	organic	and	non-organic	options.	That	could	increase	the	lines	of	code	extremely
quickly!

Using	this	method,	we	are	telling	the	machine	what	to	print	for	each	coffee	type	and	for
each	size.	This	is	fundamentally	what	is	wrong	with	imperative	code.





Functional	programming
While	imperative	code	tells	the	machine,	step-by-step,	what	it	needs	to	do	to	solve	the
problem,	functional	programming	instead	seeks	to	describe	the	problem	mathematically	so
that	the	machine	can	do	the	rest.

With	a	more	functional	approach,	the	same	application	can	be	written	as	follows:

//	separate	the	data	and	logic	from	the	interface

var	printPrice	=	function(price,	label)	{

		var	node	=	document.createElement("li");

		var	textnode	=	document.createTextNode(label+'	price:	$'+price);

		node.appendChild(textnode);

		document.getElementById('products	2').appendChild(node);

}

//	create	function	objects	for	each	type	of	coffee

var	columbian	=	function(){

		this.name	=	'columbian';	

		this.basePrice	=	5;

};

var	frenchRoast	=	function(){

		this.name	=	'french	roast';	

		this.basePrice	=	8;

};

var	decaf	=	function(){

		this.name	=	'decaf';	

		this.basePrice	=	6;

};

//	create	object	literals	for	the	different	sizes

var	small	=	{

		getPrice:	function(){return	this.basePrice	+	2},

		getLabel:	function(){return	this.name	+	'	small'}

};

var	medium	=	{

		getPrice:	function(){return	this.basePrice	+	4},

		getLabel:	function(){return	this.name	+	'	medium'}

};

var	large	=	{

		getPrice:	function(){return	this.basePrice	+	6},

		getLabel:	function(){return	this.name	+	'	large'}

};

//	put	all	the	coffee	types	and	sizes	into	arrays

var	coffeeTypes	=	[columbian,	frenchRoast,	decaf];

var	coffeeSizes	=	[small,	medium,	large];

//	build	new	objects	that	are	combinations	of	the	above

//	and	put	them	into	a	new	array

var	coffees	=	coffeeTypes.reduce(function(previous,	current)	{

		var	newCoffee	=	coffeeSizes.map(function(mixin)	{

				//	`plusmix`	function	for	functional	mixins,	see	Ch.7

				var	newCoffeeObj	=	plusMixin(current,	mixin);



				return	new	newCoffeeObj();

		});

		return	previous.concat(newCoffee);

},[]);

//	we've	now	defined	how	to	get	the	price	and	label	for	each

//	coffee	type	and	size	combination,	now	we	can	just	print	them

coffees.forEach(function(coffee){

		printPrice(coffee.getPrice(),coffee.getLabel());

});

The	first	thing	that	should	be	obvious	is	that	it	is	much	more	modular.	This	makes	adding
a	new	size	or	a	new	coffee	type	as	simple	as	shown	in	the	following	code	snippet:

var	peruvian	=	function(){

		this.name	=	'peruvian';	

		this.basePrice	=	11;

};

var	extraLarge	=	{

		getPrice:	function(){return	this.basePrice	+	10},

		getLabel:	function(){return	this.name	+	'	extra	large'}

};

coffeeTypes.push(Peruvian);

coffeeSizes.push(extraLarge);

Arrays	of	coffee	objects	and	size	objects	are	“mixed”	together,—that	is,	their	methods	and
member	variables	are	combined—with	a	custom	function	called	plusMixin	(see	Chapter
7,	Functional	and	Object-oriented	Programming	in	JavaScript).	The	coffee	type	classes
contain	the	member	variables	and	the	sizes	contain	methods	to	calculate	the	name	and
price.	The	“mixing”	happens	within	a	map	operation,	which	applies	a	pure	function	to	each
element	in	an	array	and	returns	a	new	function	inside	a	reduce()	operation—another
higher-order	function	similar	to	the	map	function,	except	that	all	the	elements	in	the	array
are	combined	into	one.	Finally,	the	new	array	of	all	possible	combinations	of	types	and
sizes	is	iterated	through	with	the	forEach()	method	The	forEach()	method	is	yet	another
higher-order	function	that	applies	a	callback	function	to	each	object	in	an	array.	In	this
example,	we	provide	it	as	an	anonymous	function	that	instantiates	the	objects	and	calls	the
printPrice()	function	with	the	object’s	getPrice()	and	getLabel()	methods	as
arguments.

Actually,	we	could	make	this	example	even	more	functional	by	removing	the	coffees
variable	and	chaining	the	functions	together—another	little	trick	in	functional
programming.

coffeeTypes.reduce(function(previous,	current)	{

		var	newCoffee	=	coffeeSizes.map(function(mixin)	{

				//	`plusMixin`	function	for	functional	mixins,	see	Ch.7

				var	newCoffeeObj	=	plusMixin(current,	mixin);

				return	new	newCoffeeObj();

		});

		return	previous.concat(newCoffee);

},[]).forEach(function(coffee)	{



		printPrice(coffee.getPrice(),coffee.getLabel());

});

Also,	the	control	flow	is	not	as	top-to-bottom	as	the	imperative	code	was.	In	functional
programming,	the	map()	function	and	other	higher-order	functions	take	the	place	of	for
and	while	loops	and	very	little	importance	is	placed	on	the	order	of	execution.	This	makes
it	a	little	trickier	for	newcomers	to	the	paradigm	to	read	the	code	but,	once	you	get	the
hang	of	it,	it’s	not	hard	at	all	to	follow	and	you’ll	see	that	it	is	much	better.

This	example	barely	touched	on	what	functional	programming	can	do	in	JavaScript.
Throughout	this	book,	you	will	see	even	more	powerful	examples	of	the	functional
approach.





Summary
First,	the	benefits	of	adopting	a	functional	style	are	clear.

Second,	don’t	be	scared	of	functional	programming.	Yes,	it	is	often	thought	of	as	pure
logic	in	the	form	of	computer	language,	but	we	don’t	need	to	understand	Lambda
calculus	to	be	able	to	apply	it	to	everyday	tasks.	The	fact	is,	by	allowing	our	programs	to
be	broken	down	into	smaller	pieces,	they’re	easier	to	understand,	simpler	to	maintain,	and
more	reliable.	map()	and	reduce()	function’s	are	lesser-known	built-in	functions	in
JavaScript,	but	we’ll	look	at	them.

JavaScript	is	a	scripting	language,	interactive	and	approachable.	No	compiling	is
necessary.	We	don’t	even	need	to	download	any	development	software,	your	favorite
browser	works	as	the	interpreter	and	as	the	development	environment.

Interested?	Alright,	let’s	get	started!





Chapter	2.	Fundamentals	of	Functional
Programming
By	now,	you’ve	seen	a	small	glimpse	of	what	functional	programming	can	do.	But	what
exactly	is	functional	programming?	What	makes	one	language	functional	and	not	another?
What	makes	one	programming	style	functional	and	not	another?

In	this	chapter,	we	will	first	answer	these	questions	and	then	cover	the	core	concepts	of
functional	programming:

Using	functions	and	arrays	for	control	flow
Writing	pure	functions,	anonymous	functions,	recursive	functions,	and	more
Passing	functions	around	like	objects
Utilizing	the	map(),	filter(),	and	reduce()	functions



Functional	programming	languages
Functional	programming	languages	are	languages	that	facilitate	the	functional
programming	paradigm.	At	the	risk	of	oversimplifying,	we	could	say	that,	if	a	language
includes	the	features	required	for	functional	programming,	then	it	is	a	functional	language
—as	simple	as	that.	In	most	cases,	it’s	the	programming	style	that	truly	determines
whether	a	program	is	functional	or	not.



What	makes	a	language	functional?
Functional	programming	cannot	be	performed	in	C.	Functional	programming	cannot	be
performed	in	Java	(without	a	lot	of	cumbersome	workarounds	for	“almost”	functional
programming).	Those	and	many	more	languages	simply	don’t	contain	the	constructs	to
support	it.	They	are	purely	object-oriented	and	strictly	non-functional	languages.

At	the	same	time,	object-oriented	programming	cannot	be	performed	on	purely	functional
languages,	such	as	Scheme,	Haskell,	and	Lisp,	just	to	name	a	few.

However,	there	are	certain	languages	that	support	both	models.	Python	is	a	famous
example,	but	there	are	others:	Ruby,	Julia,	and—here’s	the	one	we’re	interested	in—
JavaScript.	How	can	these	languages	support	two	design	patterns	that	are	very	different
from	each	other?	They	contain	the	features	required	for	both	programming	paradigms.
However,	in	the	case	of	JavaScript,	the	functional	features	are	somewhat	hidden.

But	really,	it’s	a	little	more	involved	than	that.	So	what	makes	a	language	functional?

Characteristic Imperative Functional

Programming
Style

Perform	step-by-step	tasks	and
manage	changes	in	state

Define	what	the	problem	is	and	what	data	transformations	are
needed	to	achieve	the	solution

State	Changes Important Non-existent

Order	of
Execution Important Not	as	important

Primary	Flow
Control

Loops,	conditionals,	and	function
calls Function	calls	and	recursion

Primary
Manipulation
Unit

Structures	and	class	objects Functions	as	first-class	objects	and	data	sets

The	syntax	of	the	language	must	allow	for	certain	design	patterns,	such	as	an	inferred	type
system,	and	the	ability	to	use	anonymous	functions.	Essentially,	the	language	must
implement	Lambda	calculus.	Also,	the	interpreter’s	evaluation	strategy	should	be	non-
strict	and	call-by-need	(also	known	as	deferred	execution),	which	allows	for	immutable
data	structures	and	non-strict,	lazy	evaluation.



Advantages
You	could	say	that	the	profound	enlightenment	you	experience	when	you	finally	“get	it”
will	make	learning	functional	programming	worth	it.	An	experience	such	as	this	will	make
you	a	better	programmer	for	the	rest	of	your	life,	whether	you	actually	become	a	full-time
functional	programmer	or	not.

But	we’re	not	talking	about	learning	to	meditate;	we’re	talking	about	learning	an
extremely	useful	tool	that	will	make	you	a	better	programmer.

Formally	speaking,	what	exactly	are	the	practical	advantages	of	using	functional
programming?

Cleaner	code
Functional	programs	are	cleaner,	simpler,	and	smaller.	This	simplifies	debugging,	testing,
and	maintenance.

For	example,	let’s	say	we	need	a	function	that	converts	a	two-dimensional	array	into	a
one-dimensional	array.	Using	only	imperative	techniques,	we	could	write	it	the	following
way:

function	merge2dArrayIntoOne(arrays)	{

		var	count	=	arrays.length;

		var	merged	=	new	Array(count);	

		var	c	=	0;

		for	(var	i	=	0;	i	<	count;	++i)	{

				for	(var	j	=	0,	jlen	=	arrays[i].length;	j	<	jlen;	++j)	{

						merged[c++]	=	arrays[i][j];

				}

		}

		return	merged

}

And	using	functional	techniques,	it	could	be	written	as	follows:

varmerge2dArrayIntoOne2	=	function(arrays)	{

		return	arrays.reduce(	function(p,n){

				return	p.concat(n);

		});

};

Both	of	these	functions	take	the	same	input	and	return	the	same	output.	However,	the
functional	example	is	much	more	concise	and	clean.

Modularity
Functional	programming	forces	large	problems	to	be	broken	down	into	smaller	instances
of	the	same	problem	to	be	solved.	This	means	that	the	code	is	more	modular.	Programs
that	are	modular	are	clearly	specified,	easier	to	debug,	and	simpler	to	maintain.	Testing	is
easier	because	each	piece	of	modular	code	can	potentially	be	checked	for	correctness.

Reusability



Functional	programs	share	a	variety	of	common	helper	functions,	due	to	the	modularity	of
functional	programming.	You’ll	find	that	many	of	these	functions	can	be	reused	for	a
variety	of	different	applications.

Many	of	the	most	common	functions	will	be	covered	later	in	this	chapter.	However,	as	you
work	as	a	functional	programmer,	you	will	inevitably	compile	your	own	library	of	little
functions	that	can	be	used	over	and	over	again.	For	example,	a	well-designed	function	that
searches	through	the	lines	of	a	configuration	file	could	also	be	used	to	search	through	a
hash	table.

Reduced	coupling
Coupling	is	the	amount	of	dependency	between	modules	in	a	program.	Because	the
functional	programmer	works	to	write	first-class,	higher-order,	pure	functions	that	are
completely	independent	of	each	other	with	no	side	effects	on	global	variables,	coupling	is
greatly	reduced.	Certainly,	functions	will	unavoidably	rely	on	each	other.	But	modifying
one	function	will	not	change	another,	so	long	as	the	one-to-one	mapping	of	inputs	to
outputs	remains	correct.

Mathematically	correct
This	last	one	is	on	a	more	theoretical	level.	Thanks	to	its	roots	in	Lambda	calculus,
functional	programs	can	be	mathematically	proven	to	be	correct.	This	is	a	big	advantage
for	researchers	who	need	to	prove	the	growth	rate,	time	complexity,	and	mathematical
correctness	of	a	program.

Let’s	look	at	Fibonacci’s	sequence.	Although	it’s	rarely	used	for	anything	other	than	a
proof-of-concept,	it	illustrates	this	concept	quite	well.	The	standard	way	of	evaluating	a
Fibonacci	sequence	is	to	create	a	recursive	function	that	expresses	fibonnaci(n)	=
fibonnaci(n-2)	+	fibonnaci(n–1)	with	a	base	case	to	return	1	when	n	<	2,	which
makes	it	possible	to	stop	the	recursion	and	begin	adding	up	the	values	returned	at	each
step	in	the	recursive	call	stack.

This	describes	the	intermediary	steps	involved	in	calculating	the	sequence.

var	fibonacci	=	function(n)	{

		if	(n	<	2)	{

				return	1;

		}

		else	{

				return	fibonacci(n	-	2)	+	fibonacci(n	-	1);

		}

}

console.log(	fibonacci(8)	);

//	Output:	34

However,	with	the	help	of	a	library	that	implements	a	lazy	execution	strategy,	an	indefinite
sequence	can	be	generated	that	states	the	mathematical	equation	that	defines	the	entire
sequence	of	numbers.	Only	as	many	numbers	as	needed	will	be	computed.

var	fibonacci2	=	Lazy.generate(function()	{

		var	x	=	1,



		y	=	1;

		return	function()	{

				var	prev	=	x;

				x	=	y;

				y	+=	prev;

				return	prev;

		};

}());

console.log(fibonacci2.length());//	Output:	undefined

console.log(fibonacci2.take(12).toArray());//	Output:	[1,	1,	2,	3,	5,	8,	

13,	21,	34,	55,	89,	144]	

var	fibonacci3	=	Lazy.generate(function()	{

		var	x	=	1,

		y	=	1;

		return	function()	{

				var	prev	=	x;

				x	=	y;

				y	+=	prev;

				return	prev;

		};

}());

console.log(fibonacci3.take(9).reverse().first(1).toArray());//	Output:	

[34]

The	second	example	is	clearly	more	mathematically	sound.	It	relies	on	the	Lazy.js	library
of	JavaScript.	There	are	other	libraries	that	can	help	here	as	well,	such	as	Sloth.js	and
wu.js.	These	will	be	covered	in	Chapter	3,	Setting	Up	the	Functional	Programming
Environment.



Functional	programming	in	a	nonfunctional	world
Can	functional	and	nonfunctional	programming	be	mixed	together?	Although	this	is	the
subject	of	Chapter	7,	Functional	&	Object-oriented	Programming	in	JavaScript,	it	is
important	to	get	a	few	things	straight	before	we	go	any	further.

This	book	is	not	intended	to	teach	you	how	to	implement	an	entire	application	that	strictly
adheres	to	the	rigors	of	pure	functional	programming.	Such	applications	are	rarely
appropriate	outside	Academia.	Rather,	this	book	will	teach	you	how	to	use	functional
programming	design	strategies	within	your	applications	to	complement	the	necessary
imperative	code.

For	example,	if	you	need	the	first	four	words	that	only	contain	letters	out	of	some	text,
they	could	naively	be	written	like	this:

var	words	=	[],	count	=	0;

text	=	myString.split('	');

for	(i=0;	count<4,	i<text.length;	i++)	{

		if	(!text[i].match(/[0-9]/))	{

				words	=	words.concat(text[i]);

				count++;

		}

}

console.log(words);

In	contrast,	a	functional	programmer	might	write	them	as	follows:

var	words	=	[];

var	words	=	myString.split('	').filter(function(x){

		return	(!	x.match(/[1-9]+/));

}).slice(0,4);

console.log(words);

Or,	with	a	library	of	functional	programming	utilities,	they	can	be	simplified	even	further:

var	words	=	toSequence(myString).match(/[a-zA-Z]+/).first(4);

The	key	to	identifying	functions	that	can	be	written	in	a	more	functional	way	is	to	look	for
loops	and	temporary	variables,	such	as	words	and	count	instances	in	the	preceding
example.	We	can	usually	do	away	with	both	temporary	variables	and	loops	by	replacing
them	with	higher-order	functions,	which	we	will	explore	later	in	this	chapter.

Is	JavaScript	a	functional	programming	language?
There	is	one	last	question	we	must	ask	ourselves.	Is	JavaScript	a	functional	language	or	a
non-functional	language?

JavaScript	is	arguably	the	world’s	most	popular	and	least	understood	functional
programming	language.	JavaScript	is	a	functional	programming	language	in	C-like
clothing.	Its	syntax	is	undeniably	C-like,	meaning	it	uses	C’s	block	syntax	and	in-fix
ordering.	And	it’s	one	of	the	worst	named	languages	in	existence.	It	doesn’t	take	a	lot	of
imagination	to	see	how	so	many	people	can	confuse	JavaScript	as	being	related	to	Java;
somehow,	its	name	implies	that	it	should	be!	But	in	reality	it	has	very	little	in	common



with	Java.	And,	to	really	cement	the	idea	that	JavaScript	is	an	object-oriented	language,
libraries	and	frameworks	such	as	Dojo	and	ease.js	have	been	hard	at	work	attempting	to
abstract	it	and	make	it	suitable	for	object-oriented	programming.	JavaScript	came	of	age
in	the	1990s	when	OOP	was	all	the	buzz,	and	we’ve	been	told	that	JavaScript	is	object-
oriented	because	we	want	it	to	be	so	badly.	But	it	is	not.

Its	true	identity	is	much	more	aligned	with	its	ancestors:	Scheme	and	Lisp,	two	classic
functional	languages.	JavaScript	is	a	functional	language,	all	the	way.	Its	functions	are
first-class	and	can	be	nested,	it	has	closures	and	compositions,	and	it	allows	for	currying
and	monads.	All	of	these	are	key	to	functional	programming.	Here	are	a	few	more	reasons
why	JavaScript	is	a	functional	language:

JavaScript’s	lexical	grammar	includes	the	ability	to	pass	functions	as	arguments,	has
an	inferred	type	system,	and	allows	for	anonymous	functions,	higher-order	functions,
closures	and	more.	These	facts	are	paramount	to	achieving	the	structure	and	behavior
of	functional	programming.
It	is	not	a	pure	object-oriented	language,	with	most	object-oriented	design	patterns
achieved	by	copying	the	Prototype	object,	a	weak	model	for	object-oriented
programming.	European	Computer	Manufacturers	Association	Script
(ECMAScript),	JavaScript’s	formal	and	standardized	specifications	for
implementation,	states	the	following	in	specification	4.2.1:

“ECMAScript	does	not	contain	proper	classes	such	as	those	in	C++,	Smalltalk,
or	Java,	but	rather,	supports	constructors	which	create	objects.	In	a	class-based
object-oriented	language,	in	general,	state	is	carried	by	instances,	methods	are
carried	by	classes,	and	inheritance	is	only	of	structure	and	behavior.	In
ECMAScript,	the	state	and	methods	are	carried	by	objects,	and	structure,
behavior	and	state	are	all	inherited.”

It	is	an	interpreted	language.	Sometimes	called	“engines”,	JavaScript	interpreters
often	closely	resemble	Scheme	interpreters.	Both	are	dynamic,	both	have	flexible
datatypes	that	easily	combine	and	transform,	both	evaluate	the	code	into	blocks	of
expressions,	and	both	treat	functions	similarly.

That	being	said,	it	is	true	that	JavaScript	is	not	a	pure	functional	language.	What’s	lacking
is	lazy	evaluation	and	built-in	immutable	data.	This	is	because	most	interpreters	are	call-
by-name	and	not	call-by-need.	JavaScript	also	isn’t	very	good	with	recursion	due	to	the
way	it	handles	tail	calls.	However,	all	of	these	issues	can	be	mitigated	with	a	little	bit	of
attention.	Non-strict	evaluation,	required	for	infinite	sequences	and	lazy	evaluation,	can	be
achieved	with	a	library	called	Lazy.js.	Immutable	data	can	be	achieved	simply	by
programming	technique,	but	this	requires	more	programmer	discipline	rather	than	relying
on	the	language	to	take	care	of	it.	And	recursive	tail	call	elimination	can	be	achieved	with
a	method	called	Trampolining.	These	issues	will	be	addressed	in	Chapter	6,	Advanced
Topics	&	Pitfalls	in	JavaScript.

Many	debates	have	been	waged	over	whether	or	not	JavaScript	is	a	functional	language,
an	object-oriented	language,	both,	or	neither.	And	this	won’t	be	the	last	debate.



In	the	end,	functional	programming	is	way	of	writing	cleaner	code	through	clever	ways	of
mutating,	combining,	and	using	functions.	And	JavaScript	provides	an	excellent	medium
for	this	approach.	If	you	really	want	to	use	JavaScript	to	its	full	potential,	you	must	learn
how	to	use	it	as	a	functional	language.





Working	with	functions
	 Sometimes,	the	elegant	implementation	is	a	function.	Not	a	method.	Not	a	class.	Not	a	framework.	Just	a	function. 	

	 —John	Carmack,	lead	programmer	of	the	Doom	video	game

Functional	programming	is	all	about	decomposing	a	problem	into	a	set	of	functions.
Often,	functions	are	chained	together,	nested	within	each	other,	passed	around,	and	treated
as	first-class	citizens.	If	you’ve	used	frameworks	such	as	jQuery	and	Node.js,	you’ve
probably	used	some	of	these	techniques,	you	just	didn’t	realize	it!

Let’s	start	with	a	little	JavaScript	dilemma.

Say	we	need	to	compile	a	list	of	values	that	are	assigned	to	generic	objects.	The	objects
could	be	anything:	dates,	HTML	objects,	and	so	on.

var

		obj1	=	{value:	1},

		obj2	=	{value:	2},

		obj3	=	{value:	3};

var	values	=	[];

function	accumulate(obj)	{

		values.push(obj.value);

}

accumulate(obj1);

accumulate(obj2);

console.log(values);	//	Output:	[obj1.value,	obj2.value]

It	works	but	it’s	volatile.	Any	code	can	modify	the	values	object	without	calling	the
accumulate()	function.	And	if	we	forget	to	assign	the	empty	set,	[],	to	the	values
instance	then	the	code	will	not	work	at	all.

But	if	the	variable	is	declared	inside	the	function,	it	can’t	be	mutated	by	any	rogue	lines	of
code.

function	accumulate2(obj)	{

		var	values	=	[];

		values.push(obj.value);

		return	values;

}

console.log(accumulate2(obj1));	//	Returns:	[obj1.value]

console.log(accumulate2(obj2));	//	Returns:	[obj2.value]

console.log(accumulate2(obj3));	//	Returns:	[obj3.value]

It	does	not	work!	Only	the	value	of	the	object	last	passed	in	is	returned.

We	could	possibly	solve	this	with	a	nested	function	inside	the	first	function.

var	ValueAccumulator	=	function(obj)	{

		var	values	=	[]

		var	accumulate	=	function()	{

				values.push(obj.value);			

		};

		accumulate();



		return	values;

};

But	it’s	the	same	issue,	and	now	we	cannot	reach	the	accumulate	function	or	the	values
variable.

What	we	need	is	a	self-invoking	function.



Self-invoking	functions	and	closures
What	if	we	could	return	a	function	expression	that	in-turn	returns	the	values	array?
Variables	declared	in	a	function	are	available	to	any	code	within	the	function,	including
self-invoking	functions.

By	using	a	self-invoking	function,	our	dilemma	is	solved.

var	ValueAccumulator	=	function()	{

		var	values	=	[];

		var	accumulate	=	function(obj)	{

				if	(obj)	{

						values.push(obj.value);

						return	values;

				}

				else	{

						return	values;

				}

		};

		return	accumulate;

};

//This	allows	us	to	do	this:

var	accumulator	=	ValueAccumulator();

accumulator(obj1);	

accumulator(obj2);	

console.log(accumulator());	

//	Output:	[obj1.value,	obj2.value]

It’s	all	about	variable	scoping.	The	values	variable	is	available	to	the	inner	accumulate()
function,	even	when	code	outside	the	scope	calls	the	functions.	This	is	called	a	closure.

Note
Closures	in	JavaScript	are	functions	that	have	access	to	the	parent	scope,	even	when	the
parent	function	has	closed.

Closures	are	a	feature	of	all	functional	languages.	Traditional	imperative	languages	do	not
allow	them.



Higher-order	functions
Self-invoking	functions	are	actually	a	form	of	higher-order	functions.	Higher-order
functions	are	functions	that	either	take	another	function	as	the	input	or	return	a	function	as
the	output.

Higher-order	functions	are	not	common	in	traditional	programming.	While	an	imperative
programmer	might	use	a	loop	to	iterate	an	array,	a	functional	programmer	would	take
another	approach	entirely.	By	using	a	higher-order	function,	the	array	can	be	worked	on	by
applying	that	function	to	each	item	in	the	array	to	create	a	new	array.

This	is	the	central	idea	of	the	functional	programming	paradigm.	What	higher-order
functions	allow	is	the	ability	to	pass	logic	to	other	functions,	just	like	objects.

Functions	are	treated	as	first-class	citizens	in	JavaScript,	a	distinction	JavaScript	shares
with	Scheme,	Haskell,	and	the	other	classic	functional	languages.	This	may	sound	bizarre,
but	all	this	really	means	is	that	functions	are	treated	as	primitives,	just	like	numbers	and
objects.	If	numbers	and	objects	can	be	passed	around,	so	can	functions.

To	see	this	in	action,	let’s	use	a	higher-order	function	with	our	ValueAccumulator()
function	from	the	previous	section:

//	using	forEach()	to	iterate	through	an	array	and	call	a	

//	callback	function,	accumulator,	for	each	item

var	accumulator2	=	ValueAccumulator();

var	objects	=	[obj1,	obj2,	obj3];	//	could	be	huge	array	of	objects

objects.forEach(accumulator2);

console.log(accumulator2());



Pure	functions
Pure	functions	return	a	value	computed	using	only	the	inputs	passed	to	it.	Outside
variables	and	global	states	may	not	be	used	and	there	may	be	no	side	effects.	In	other
words,	it	must	not	mutate	the	variables	passed	to	it	for	input.	Therefore,	pure	functions	are
only	used	for	their	returned	value.

A	simple	example	of	this	is	a	math	function.	The	Math.sqrt(4)	function	will	always
return	2,	does	not	use	any	hidden	information	such	as	settings	or	state,	and	will	never
inflict	any	side	effects.

Pure	functions	are	the	true	interpretation	of	the	mathematical	term	for	‘function’,	a
relation	between	inputs	and	an	output.	They	are	simple	to	think	about	and	are	readily	re-
usable.	Because	they	are	totally	independent,	pure	functions	are	more	capable	of	being
used	again	and	again.

To	illustrate	this,	compare	the	following	non-pure	function	to	the	pure	one.

//	function	that	prints	a	message	to	the	center	of	the	screen

var	printCenter	=	function(str)	{

		var	elem	=	document.createElement("div");

		elem.textContent	=	str;

		elem.style.position	=	'absolute';

		elem.style.top	=	window.innerHeight/2+"px";

		elem.style.left	=	window.innerWidth/2+"px";

		document.body.appendChild(elem);

};

printCenter('hello	world');

//	pure	function	that	accomplishes	the	same	thing

var	printSomewhere	=	function(str,	height,	width)	{

		var	elem	=	document.createElement("div");

		elem.textContent	=	str;

		elem.style.position	=	'absolute';

		elem.style.top	=	height;

		elem.style.left	=	width;

		return	elem;

};

document.body.appendChild(printSomewhere('hello	world',	

window.innerHeight/2)+10+"px",window.innerWidth/2)+10+"px")

);

While	the	non-pure	function	relies	on	the	state	of	the	window	object	to	compute	the	height
and	width,	the	pure,	self-sufficient	function	instead	asks	that	those	values	be	passed	in.
What	this	actually	does	is	allow	the	message	to	be	printed	anywhere,	and	this	makes	the
function	much	more	versatile.

And	while	the	non-pure	function	may	seem	like	the	easier	option	because	it	performs	the
appending	itself	instead	of	returning	an	element,	the	pure	function	printSomewhere()	and
its	returned	value	play	better	with	other	functional	programming	design	techniques.

var	messages	=	['Hi',	'Hello',	'Sup',	'Hey',	'Hola'];

messages.map(function(s,i){

		return	printSomewhere(s,	100*i*10,	100*i*10);



}).forEach(function(element)	{

		document.body.appendChild(element);

});

Note
When	the	functions	are	pure	and	don’t	rely	on	state	or	environment,	then	we	don’t	care
about	when	or	where	they	actually	get	computed.	We’ll	see	this	later	with	lazy	evaluation.



Anonymous	functions
Another	benefit	of	treating	functions	as	first-class	objects	is	the	advent	of	anonymous
functions.

As	the	name	might	imply,	anonymous	functions	are	functions	without	names.	But	they	are
more	than	that.	What	they	allow	is	the	ability	to	define	ad-hoc	logic,	on-the-spot	and	as
needed.	Usually,	it’s	for	the	benefit	of	convenience;	if	the	function	is	only	referred	to	once,
then	a	variable	name	doesn’t	need	to	be	wasted	on	it.

Some	examples	of	anonymous	functions	are	as	follows:

//	The	standard	way	to	write	anonymous	functions

function(){return	"hello	world"};

//	Anonymous	function	assigned	to	variable

var	anon	=	function(x,y){return	x+y};

//	Anonymous	function	used	in	place	of	a	named	callback	function,	

//	this	is	one	of	the	more	common	uses	of	anonymous	functions.

setInterval(function(){console.log(new	Date().getTime())},	1000);

//	Output:		1413249010672,	1413249010673,	1413249010674,	...

//	Without	wrapping	it	in	an	anonymous	function,	it	immediately	//	execute	

once	and	then	return	undefined	as	the	callback:

setInterval(console.log(new	Date().getTime()),	1000)

//	Output:		1413249010671

A	more	involved	example	of	anonymous	functions	used	within	higher-order	functions:

function	powersOf(x)	{

		return	function(y)	{

				//	this	is	an	anonymous	function!

				return	Math.pow(x,y);

		};

}

powerOfTwo	=	powersOf(2);

console.log(powerOfTwo(1));	//	2

console.log(powerOfTwo(2));	//	4

console.log(powerOfTwo(3));	//	8

powerOfThree	=	powersOf(3);

console.log(powerOfThree(3));		//	9

console.log(powerOfThree(10));	//	59049

The	function	that	is	returned	doesn’t	need	to	be	named;	it	can’t	be	used	anywhere	outside
the	powersOf()	function,	and	so	it	is	an	anonymous	function.

Remember	our	accumulator	function?	It	can	be	re-written	using	anonymous	functions.

var

		obj1	=	{value:	1},

		obj2	=	{value:	2},

		obj3	=	{value:	3};



var	values	=	(function()	{

		//	anonymous	function

		var	values	=	[];

		return	function(obj)	{

				//	another	anonymous	function!

				if	(obj)	{

						values.push(obj.value);

						return	values;

				}

				else	{

						return	values;

				}

		}

})();	//	make	it	self-executing

console.log(values(obj1));	//	Returns:	[obj.value]

console.log(values(obj2));	//	Returns:	[obj.value,	obj2.value]

Right	on!	A	pure,	high-order,	anonymous	function.	How	did	we	ever	get	so	lucky?
Actually,	it’s	more	than	that.	It’s	also	self-executing	as	indicated	by	the	structure,
(function(){...})();.	The	pair	of	parentheses	following	the	anonymous	function
causes	the	function	to	be	called	right	away.	In	the	above	example,	the	values	instance	is
assigned	to	the	output	of	the	self-executing	function	call.

Note
Anonymous	functions	are	more	than	just	syntactical	sugar.	They	are	the	embodiment	of
Lambda	calculus.	Stay	with	me	on	this…	Lambda	calculus	was	invented	long	before
computers	or	computer	languages.	It	was	just	a	mathematical	notion	for	reasoning	about
functions.	Remarkably,	it	was	discovered	that—despite	the	fact	that	it	only	defines	three
kinds	of	expressions:	variable	references,	function	calls,	and	anonymous	functions—it	was
Turing-complete.	Today,	Lambda	calculus	lies	at	the	core	of	all	functional	languages	if
you	know	how	to	find	it,	including	JavaScript.

For	this	reason,	anonymous	functions	are	often	called	lambda	expressions.

One	drawback	to	anonymous	functions	remains.	They’re	difficult	to	identify	in	call	stacks,
which	makes	debugging	trickier.	They	should	be	used	sparingly.



Method	chains
Chaining	methods	together	in	JavaScript	is	quit	common.	If	you’ve	used	jQuery,	you’ve
likely	performed	this	technique.	It’s	sometimes	called	the	“Builder	Pattern”.

It’s	a	technique	that	is	used	to	simplify	code	where	multiple	functions	are	applied	to	an
object	one	after	another.

//	Instead	of	applying	the	functions	one	per	line…

arr	=	[1,2,3,4];

arr1	=	arr.reverse();

arr2	=	arr1.concat([5,6]);

arr3	=	arr2.map(Math.sqrt);

//	...they	can	be	chained	together	into	a	one-liner

console.log([1,2,3,4].reverse().concat([5,6]).map(Math.sqrt));

//	parentheses	may	be	used	to	illustrate

console.log(((([1,2,3,4]).reverse()).concat([5,6])).map(Math.sqrt)	);

This	only	works	when	the	functions	are	methods	of	the	object	being	worked	on.	If	you
created	your	own	function	that,	for	example,	takes	two	arrays	and	returns	an	array	with	the
two	arrays	zipped	together,	you	must	declare	it	as	a	member	of	the	Array.prototype
object.	Take	a	look	at	the	following	code	snippet:

Array.prototype.zip	=	function(arr2)	{

		//	...

}

This	would	allow	us	to	the	following:

arr.zip([11,12,13,14).map(function(n){return	n*2});

//	Output:	2,	22,	4,	24,	6,	26,	8,	28



Recursion
Recursion	is	likely	the	most	famous	functional	programming	technique.	If	you	don’t	know
by	now,	a	recursive	function	is	a	function	that	calls	itself.

When	a	functions	calls	itself,	something	strange	happens.	It	acts	both	as	a	loop,	in	that	it
executes	the	same	code	multiple	times,	and	as	a	function	stack.

Recursive	functions	must	be	very	careful	to	avoid	an	infinite	loop	(rather,	infinite
recursion	in	this	case).	So	just	like	loops,	a	condition	must	be	used	to	know	when	to	stop.
This	is	called	the	base	case.

An	example	is	as	follows:

var	foo	=	function(n)	{

		if	(n	<	0)	{

				//	base	case

				return	'hello';

		}

		else	{

				//	recursive	case

				foo(n-1);

		}

}

console.log(foo(5));

It’s	possible	to	convert	any	loop	to	a	recursive	algorithm	and	any	recursive	algorithm	to	a
loop.	But	recursive	algorithms	are	more	appropriate,	almost	necessary,	for	situations	that
differ	greatly	from	those	where	loops	are	appropriate.

A	good	example	is	tree	traversal.	While	it’s	not	too	hard	to	traverse	a	tree	using	a	recursive
function,	a	loop	would	be	much	more	complex	and	would	need	to	maintain	a	stack.	And
that	would	go	against	the	spirit	of	functional	programming.

var	getLeafs	=	function(node)	{

		if	(node.childNodes.length	==	0)	{

				//	base	case

				return	node.innerText;

		}

		else	{

				//	recursive	case:	

				return	node.childNodes.map(getLeafs);

		}

}

Divide	and	conquer
Recursion	is	more	than	an	interesting	way	to	iterate	without	for	and	while	loops.	An
algorithm	design,	known	as	divide	and	conquer,	recursively	breaks	problems	down	into
smaller	instances	of	the	same	problem	until	they’re	small	enough	to	solve.

The	historical	example	of	this	is	the	Euclidan	algorithm	for	finding	the	greatest	common
denominator	for	two	numbers.



function	gcd(a,	b)	{

		if	(b	==	0)	{

				//	base	case	(conquer)

				return	a;

		}

		else	{

				//	recursive	case	(divide)

				return	gcd(b,	a	%	b);

		}

}

console.log(gcd(12,8));

console.log(gcd(100,20));

So	in	theory,	divide	and	conquer	works	quite	eloquently,	but	does	it	have	any	use	in	the
real	world?	Yes!	The	JavaScript	function	for	sorting	arrays	is	not	very	good.	Not	only	does
it	sort	the	array	in	place,	which	means	that	the	data	is	not	immutable,	but	it	is	unreliable
and	inflexible.	With	divide	and	conquer,	we	can	do	better.

The	merge	sort	algorithm	uses	the	divide	and	conquer	recursive	algorithm	design	to
efficiently	sort	an	array	by	recursively	dividing	the	array	into	smaller	sub-arrays	and	then
merging	them	together.

The	full	implementation	in	JavaScript	is	about	40	lines	of	code.	However,	pseudo-code	is
as	follows:

var	mergeSort	=	function(arr){

		if	(arr.length	<	2)	{

				//	base	case:	0	or	1	item	arrays	don't	need	sorting

				return	items;

		}

		else	{

				//	recursive	case:	divide	the	array,	sort,	then	merge

				var	middle	=	Math.floor(arr.length	/	2);

				//	divide

				var	left	=	mergeSort(arr.slice(0,	middle));

				var	right	=	mergeSort(arr.slice(middle));

				//	conquer

				//	merge	is	a	helper	function	that	returns	a	new	array

				//	of	the	two	arrays	merged	together

				return	merge(left,	right);

		}

}



Lazy	evaluation
Lazy	evaluation,	also	known	as	non-strict	evaluation,	call-by-need	and	deffered	execution,
is	an	evaluation	strategy	that	waits	until	the	value	is	needed	to	compute	the	result	of	a
function	and	is	particularly	useful	for	functional	programming.	It’s	clear	that	a	line	of	code
that	states	x	=	func()	is	calling	for	x	to	be	assigned	to	the	returned	value	by	func().	But
what	x	actually	equates	to	does	not	matter	until	it	is	needed.	Waiting	to	call	func()	until	x
is	needed	is	known	as	lazy	evaluation.

This	strategy	can	result	in	a	major	increase	in	performance,	especially	when	used	with
method	chains	and	arrays,	the	favorite	program	flow	techniques	of	the	functional
programmer.

One	exciting	benefit	of	lazy	evaluation	is	the	existence	of	infinite	series.	Because	nothing
is	actually	computed	until	it	can’t	be	delayed	any	further,	it’s	possible	to	do	this:

//	wishful	JavaScript	pseudocode:

var	infinateNums	=	range(1	to	infinity);

var	tenPrimes	=	infinateNums.getPrimeNumbers().first(10);

This	opens	the	door	for	many	possibilities:	asynchronous	execution,	parallelization,	and
composition,	just	to	name	a	few.

However,	there’s	one	problem:	JavaScript	does	not	perform	Lazy	evaluation	on	its	own.
That	being	said,	there	exist	libraries	for	JavaScript	that	simulate	lazy	evaluation	very	well.
That	is	the	subject	of	Chapter	3,	Setting	Up	the	Functional	Programming	Environment.





The	functional	programmer’s	toolkit
If	you’ve	looked	closely	at	the	few	examples	presented	so	far,	you’ll	notice	a	few	methods
being	used	that	you	may	not	be	familiar	with.	They	are	the	map(),	filter(),	and
reduce()	functions,	and	they	are	crucial	to	every	functional	program	of	any	language.
They	enable	you	to	remove	loops	and	statements,	resulting	in	cleaner	code.

The	map(),	filter(),	and	reduce()	functions	make	up	the	core	of	the	functional
programmer’s	toolkit,	a	collection	of	pure,	higher-order	functions	that	are	the	workhorses
of	the	functional	method.	In	fact,	they’re	the	epitome	of	what	a	pure	function	and	what	a
higher-order	function	should	be	like;	they	take	a	function	as	input	and	return	an	output
with	zero	side	effects.

While	they’re	standard	for	browsers	that	implement	ECMAScript	5.1,	they	only	work	on
arrays.	Each	time	it’s	called,	a	new	array	is	created	and	returned.	The	existing	array	is	not
modified.	But	there’s	more,	they	take	functions	as	inputs,	often	in	the	form	of	anonymous
functions	referred	to	as	callback	functions;	they	iterate	over	the	array	and	apply	the
function	to	each	item	in	the	array!

myArray	=	[1,2,3,4];

newArray	=	myArray.map(function(x)	{return	x*2});

console.log(myArray);		//	Output:	[1,2,3,4]

console.log(newArray);	//	Output:	[2,4,6,8]

One	more	thing.	Because	they	only	work	on	arrays,	they	do	not	work	on	other	iterable
data	structures,	like	certain	objects.	Fret	not,	libraries	such	as	underscore.js,	Lazy.js,
stream.js,	and	many	more	all	implement	their	own	map(),	filter(),	and	reduce()
methods	that	are	more	versatile.



Callbacks
If	you’ve	never	worked	with	callbacks	before,	you	might	find	the	concept	a	little	puzzling.
This	is	especially	true	in	JavaScript,	given	the	several	different	ways	that	JavaScript
allows	you	to	declare	functions.

A	callback()	function	is	used	for	passing	to	other	functions	for	them	to	use.	It’s	a	way	to
pass	logic	just	as	you	would	pass	an	object:

var	myArray	=	[1,2,3];

function	myCallback(x){return	x+1};

console.log(myArray.map(myCallback));

To	make	it	simpler	for	easy	tasks,	anonymous	functions	can	be	used:

console.log(myArray.map(function(x){return	x+1}));

They	are	not	only	used	in	functional	programming,	they	are	used	for	many	things	in
JavaScript.	Purely	for	example,	here’s	a	callback()	function	used	in	an	AJAX	call	made
with	jQuery:

function	myCallback(xhr){

		console.log(xhr.status);	

		return	true;

}

$.ajax(myURI).done(myCallback);

Notice	that	only	the	name	of	the	function	was	used.	And	because	we’re	not	calling	the
callback	and	are	only	passing	the	name	of	it,	it	would	be	wrong	to	write	this:

$.ajax(myURI).fail(myCallback(xhr));

//	or

$.ajax(myURI).fail(myCallback());

What	would	happen	if	we	did	call	the	callback?	In	that	case,	the	myCallback(xhr)	method
would	try	to	execute—‘undefined’	would	be	printed	to	the	console	and	it	would	return
True.	When	the	ajax()	call	completes,	it	will	have	‘true’	as	the	name	of	the	callback
function	to	use,	and	that	will	throw	an	error.

What	this	also	means	is	that	we	cannot	specify	what	arguments	are	passed	to	the	callback
functions.	If	we	need	different	parameters	from	what	the	ajax()	call	will	pass	to	it,	we	can
wrap	the	callback	function	in	an	anonymous	function:

function	myCallback(status){

		console.log(status);	

		return	true;

}

$.ajax(myURI).done(function(xhr){myCallback(xhr.status)});



Array.prototype.map()
The	map()	function	is	the	ringleader	of	the	bunch.	It	simply	applies	the	callback	function
on	each	item	in	the	array.

Note
Syntax:	arr.map(callback	[,	thisArg]);

Parameters:

callback():	This	function	produces	an	element	for	the	new	array,	receiving	these
arguments:

currentValue:	This	argument	gives	the	current	element	being	processed	in	the
array
index:	This	argument	gives	the	index	of	the	current	element	in	the	array
array:	This	argument	gives	the	array	being	processed

thisArg():	This	function	is	optional.	The	value	is	used	as	this	when	executing
callback.

Examples:

var

		integers	=	[1,-0,9,-8,3],

		numbers	=	[1,2,3,4],

		str	=	'hello	world	how	ya	doing?';

//	map	integers	to	their	absolute	values

console.log(integers.map(Math.abs));

//	multiply	an	array	of	numbers	by	their	position	in	the	array

console.log(numbers.map(function(x,	i){return	x*i})	);

//	Capitalize	every	other	word	in	a	string.

console.log(str.split('	').map(function(s,	i){

		if	(i%2	==	0)	{

				return	s.toUpperCase();

		}

		else	{

				return	s;

		}

})	);

Note
While	the	Array.prototype.map	method	is	a	standard	method	for	the	Array	object	in
JavaScript,	it	can	be	easily	extended	to	your	custom	objects	as	well.

MyObject.prototype.map	=	function(f)	{

		return	new	MyObject(f(this.value));

};



Array.prototype.filter()
The	filter()	function	is	used	to	take	elements	out	of	an	array.	The	callback	must	return
True	(to	include	the	item	in	the	new	array)	or	False	(to	drop	it).	Something	similar	could
be	achieved	by	using	the	map()	function	and	returning	a	null	value	for	items	you	want
dropped,	but	the	filter()	function	will	delete	the	item	from	the	new	array	instead	of
inserting	a	null	value	in	its	place.

Note
Syntax:	arr.filter(callback	[,	thisArg]);

Parameters:

callback():	This	function	is	used	to	test	each	element	in	the	array.	Return	True	to
keep	the	element,	False	otherwise.	With	these	parameters:

currentValue:	This	parameter	gives	the	current	element	being	processed	in	the
array
index:	This	parameter	gives	the	index	of	the	current	element	in	the	array

array:	This	parameter	gives	the	array	being	processed.
thisArg():	This	function	is	optional.	Value	is	used	as	this	when	executing
callback.

Examples:

var	myarray	=	[1,2,3,4]

words	=	'hello	123	world	how	345	ya	doing'.split('	');

re	=	'[a-zA-Z]';

//	remove	all	negative	numbers

console.log([-2,-1,0,1,2].filter(function(x){return	x>0}));

//	remove	null	values	after	a	map	operation

console.log(words.filter(function(s){

		return	s.match(re);

})	);

//	remove	random	objects	from	an	array

console.log(myarray.filter(function(){

		return	Math.floor(Math.random()*2)})

);



Array.prototype.reduce()
Sometimes	called	fold,	the	reduce()	function	is	used	to	accumulate	all	the	values	of	the
array	into	one.	The	callback	needs	to	return	the	logic	to	be	performed	to	combine	the
objects.	In	the	case	of	numbers,	they’re	usually	added	together	to	get	a	sum	or	multiplied
together	to	get	a	product.	In	the	case	of	strings,	the	strings	are	often	appended	together.

Note
Syntax:	arr.reduce(callback	[,	initialValue]);

Parameters:

callback():	This	function	combines	two	objects	into	one,	which	is	returned.	With
these	parameters:

previousValue:	This	parameter	gives	the	value	previously	returned	from	the
last	invocation	of	the	callback,	or	the	initialValue,	if	supplied
currentValue:	This	parameter	gives	the	current	element	being	processed	in	the
array
index:	This	parameter	gives	the	index	of	the	current	element	in	the	array
array:	This	parameter	gives	the	array	being	processed

initialValue():	This	function	is	optional.	Object	to	use	as	the	first	argument	to	the
first	call	of	the	callback.

Examples:

var	numbers	=	[1,2,3,4];

//	sum	up	all	the	values	of	an	array

console.log([1,2,3,4,5].reduce(function(x,y){return	x+y},	0));

//	sum	up	all	the	values	of	an	array

console.log([1,2,3,4,5].reduce(function(x,y){return	x+y},	0));

//	find	the	largest	number

console.log(numbers.reduce(function(a,b){

		return	Math.max(a,b)})	//	max	takes	two	arguments

);



Honorable	mentions
The	map(),	filter(),	and	reduce()	functions	are	not	alone	in	our	toolbox	of	helper
functions.	There	exist	many	more	functions	that	can	be	plugged	into	nearly	any	functional
application.

Array.prototype.forEach
Essentially	the	non-pure	version	of	map(),	forEach()	iterates	over	an	array	and	applies	a
callback()	function	over	each	item.	However,	it	doesn’t	return	anything.	It’s	a	cleaner
way	of	performing	a	for	loop.

Note
Syntax:	arr.forEach(callback	[,	thisArg]);

Parameters:

callback():	This	function	is	to	be	performed	for	each	value	of	the	array.	With	these
parameters:

currentValue:	This	parameter	gives	the	current	element	being	processed	in	the
array
index:	This	parameter	gives	the	index	of	the	current	element	in	the	array
array:	This	parameter	gives	the	array	being	processed

thisArg:	This	function	is	optional.	Value	is	used	as	this	when	executing	callback.

Examples:

var	arr	=	[1,2,3];

var	nodes	=	arr.map(function(x)	{

		var	elem	=	document.createElement("div");

		elem.textContent	=	x;

		return	elem;

});

//	log	the	value	of	each	item

arr.forEach(function(x){console.log(x)});

//	append	nodes	to	the	DOM

nodes.forEach(function(x){document.body.appendChild(x)});

Array.prototype.concat
When	working	with	arrays	instead	of	for	and	while	loops,	often	you	will	need	to	join
multiple	arrays	together.	Another	built-in	JavaScript	function,	concat(),	takes	care	of	this
for	us.	The	concat()	function	returns	a	new	array	and	leaves	the	old	arrays	untouched.	It
can	join	as	many	arrays	as	you	pass	to	it.

console.log([1,	2,	3].concat(['a','b','c'])	//	concatenate	two	arrays);

//	Output:	[1,	2,	3,	'a','b','c']

The	original	array	is	untouched.	It	returns	a	new	array	with	both	arrays	concatenated



together.	This	also	means	that	the	concat()	function	can	be	chained	together.

var	arr1	=	[1,2,3];

var	arr2	=	[4,5,6];

var	arr3	=	[7,8,9];

var	x	=	arr1.concat(arr2,	arr3);

var	y	=	arr1.concat(arr2).concat(arr3));

var	z	=	arr1.concat(arr2.concat(arr3)));

console.log(x);

console.log(y);

console.log(z);

Variables	x,	y	and	z	all	contain	[1,2,3,4,5,6,7,8,9].

Array.prototype.reverse
Another	native	JavaScript	function	helps	with	array	transformations.	The	reverse()
function	inverts	an	array,	such	that	the	first	element	is	now	the	last	and	the	last	is	now	the
first.

However,	it	does	not	return	a	new	array;	instead	it	mutates	the	array	in	place.	We	can	do
better.	Here’s	an	implementation	of	a	pure	method	for	reversing	an	array:

var	invert	=	function(arr)	{

		return	arr.map(function(x,	i,	a)	{

				return	a[a.length	-	(i+1)];

		});

};

var	q	=	invert([1,2,3,4]);

console.log(	q	);

Array.prototype.sort
Much	like	our	map(),	filter(),	and	reduce()	methods,	the	sort()	method	takes	a
callback()	function	that	defines	how	the	objects	within	an	array	should	be	sorted.	But,
like	the	reverse()	function,	it	mutates	the	array	in	place.	And	that’s	no	bueno.

arr	=	[200,	12,	56,	7,	344];

console.log(arr.sort(function(a,b){return	a–b})	);

//	arr	is	now:	[7,	12,	56,	200,	344];

We	could	write	a	pure	sort()	function	that	doesn’t	mutate	the	array,	but	sorting
algorithms	is	the	source	of	much	grief.	Significantly	large	arrays	that	need	to	be	sorted
really	should	be	organized	in	data	structures	that	are	designed	just	for	that:	quickStort,
mergeSort,	bubbleSort,	and	so	on.

Array.prototype.every	and	Array.prototype.some
The	Array.prototype.every()	and	Array.prototype.some()	functions	are	both	pure
and	high-order	functions	that	are	methods	of	the	Array	object	and	are	used	to	test	the
elements	of	an	array	against	a	callback()	function	that	must	return	a	Boolean
representing	the	respective	input.	The	every()	function	returns	True	if	the	callback()
function	returns	True	for	every	element	in	the	array,	and	the	some()	function	returns	True
if	some	elements	in	the	array	are	True.



Example:

function	isNumber(n)	{

		return	!isNaN(parseFloat(n))	&&	isFinite(n);

}

console.log([1,	2,	3,	4].every(isNumber));	//	Return:	true

console.log([1,	2,	'a'].every(isNumber));	//	Return:	false

console.log([1,	2,	'a'].some(isNumber));	//	Return:	true





Summary
In	order	to	develop	an	understanding	of	functional	programming,	this	chapter	covered	a
fairly	broad	range	of	topics.	First	we	analyzed	what	it	means	for	a	programming	language
to	be	functional,	then	we	evaluated	JavaScript	for	its	functional	programming	capabilities.
Next,	we	applied	the	core	concepts	of	functional	programming	using	JavaScript	and
showcased	some	of	JavaScript’s	built-in	functions	for	functional	programming.

Although	JavaScript	does	have	a	few	tools	for	functional	programming,	its	functional	core
remains	mostly	hidden	and	much	is	to	be	desired.	In	the	next	chapter,	we	will	explore
several	libraries	for	JavaScript	that	expose	its	functional	underbelly.





Chapter	3.	Setting	Up	the	Functional
Programming	Environment



Introduction
Do	we	need	to	know	advanced	math—category	theory,	Lambda	calculus,	polymorphisms
—just	to	write	applications	with	functional	programming?	Do	we	need	to	reinvent	the
wheel?	The	short	answer	to	both	these	questions	is	no.

In	this	chapter,	we	will	do	our	best	to	survey	everything	that	can	impact	the	way	we	write
our	functional	applications	in	JavaScript.

Libraries
Toolkits
Development	environments
Functional	language	that	compiles	to	JavaScript
And	more

Please	understand	that	the	current	landscape	of	functional	libraries	for	JavaScript	is	a	very
fluid	one.	Like	all	aspects	of	computer	programming,	the	community	can	change	in	a
heartbeat;	new	libraries	can	be	adopted	and	old	ones	can	be	abandoned.	For	instance,
during	the	writing	process	of	this	very	book,	the	popular	and	stable	Node.js	platform	for
I/O	has	been	forked	by	its	open	source	community.	Its	future	is	vague.

Therefore,	the	most	important	concept	to	be	gained	from	this	chapter	is	not	how	to	use	the
current	libraries	for	functional	programming,	but	how	to	use	any	library	that	enhances
JavaScript’s	functional	programming	method.	This	chapter	will	not	focus	on	just	one	or
two	libraries,	but	will	explore	as	many	as	possible	with	the	goal	of	surveying	all	the	many
styles	of	functional	programming	that	exist	within	JavaScript.





Functional	libraries	for	JavaScript
It’s	been	said	that	every	functional	programmer	writes	their	own	library	of	functions,	and
functional	JavaScript	programmers	are	no	exception.	With	today’s	open	source	code-
sharing	platforms	such	as	GitHub,	Bower,	and	NPM,	it’s	easier	to	share,	collaborate,	and
grow	these	libraries.	Many	libraries	exist	for	functional	programming	with	JavaScript,
ranging	from	tiny	toolkits	to	monolithic	module	libraries.

Each	library	promotes	its	own	style	of	functional	programming.	From	a	rigid,	math-based
style	to	a	relaxed,	informal	style,	each	library	is	different	but	they	all	share	one	common
feature:	they	all	have	abstract	JavaScript	functional	capabilities	to	increase	code	re-use,
readability,	and	robustness.

At	the	time	of	writing,	however,	a	single	library	has	not	established	itself	as	the	de-facto
standard.	Some	might	argue	that	underscore.js	is	the	one	but,	as	you’ll	see	in	the
following	section,	it	might	be	advisable	to	avoid	underscore.js.



Underscore.js
Underscore	has	become	the	standard	functional	JavaScript	library	in	the	eyes	of	many.	It	is
mature,	stable,	and	was	created	by	Jeremy	Ashkenas,	the	man	behind	the	Backbone.js	and
CoffeeScript	libraries.	Underscore	is	actually	a	reimplementation	of	Ruby’s	Enumerable
module,	which	explains	why	CoffeeScript	was	also	influenced	by	Ruby.

Similar	to	jQuery,	Underscore	doesn’t	modify	native	JavaScript	objects	and	instead	uses	a
symbol	to	define	its	own	object:	the	underscore	character	“_“.	So,	using	Underscore	would
work	like	this:

var	x	=	_.map([1,2,3],	Math.sqrt);	//	Underscore's	map	function

console.log(x.toString());

We’ve	already	seen	JavaScrip’s	native	map()	method	for	the	Array	object,	which	works
like	this:

var	x	=	[1,2,3].map(Math.sqrt);

The	difference	is	that,	in	Underscore,	both	the	Array	object	and	the	callback()	function
are	passed	as	parameters	to	the	Underscore	object’s	map()	method	(_.map),	as	opposed	to
passing	only	the	callback	to	the	array’s	native	map()	method	(Array.prototype.map).

But	there’s	way	more	than	just	map()	and	other	built-in	functions	to	Underscore.	It’s	full
of	super	handy	functions	such	as	find(),	invoke(),	pluck(),	sortyBy(),	groupBy(),	and
more.

var	greetings	=	[{origin:	'spanish',	value:	'hola'},	

{origin:	'english',	value:	'hello'}];

console.log(_.pluck(greetings,	'value')		);

//	Grabs	an	object's	property.

//	Returns:	['hola',	'hello']

console.log(_.find(greetings,	function(s)	{return	s.origin	==	

'spanish';}));

//	Looks	for	the	first	obj	that	passes	the	truth	test

//	Returns:	{origin:	'spanish',	value:	'hola'}

greetings	=	greetings.concat(_.object(['origin','value'],

['french','bonjour']));

console.log(greetings);

//	_.object	creates	an	object	literal	from	two	merged	arrays

//	Returns:	[{origin:	'spanish',	value:	'hola'},

//{origin:	'english',	value:	'hello'},

//{origin:	'french',	value:	'bonjour'}]

And	it	provides	a	way	of	chaining	methods	together:

var	g	=	_.chain(greetings)

		.sortBy(function(x)	{return	x.value.length})

		.pluck('origin')

		.map(function(x){return	x.charAt(0).toUpperCase()+x.slice(1)})

		.reduce(function(x,	y){return	x	+	'	'	+	y},	'')

		.value();

//	Applies	the	functions	

//	Returns:	'Spanish	English	French'



console.log(g);

Note
The	_.chain()	method	returns	a	wrapped	object	that	holds	all	the	Underscore	functions.
The	_.value	method	is	then	used	to	extract	the	value	of	the	wrapped	object.	Wrapped
objects	are	also	very	useful	for	mixing	Underscore	with	object-oriented	programming.

Despite	its	ease	of	use	and	adaptation	by	the	community,	the	underscore.js	library	has
been	criticized	for	forcing	you	to	write	overly	verbose	code	and	for	encouraging	the
wrong	patterns.	Underscore’s	structure	may	not	be	ideal	or	even	function!

Until	version	1.7.0,	released	shortly	after	Brian	Lonsdorf’s	talk	entitled	Hey	Underscore,
you’re	doing	it	wrong!,	landed	on	YouTube,	Underscore	explicitly	prevented	us	from
extending	functions	such	as	map(),	reduce(),	filter(),	and	more.

_.prototype.map	=	function(obj,	iterate,	[context])	{

		if	(Array.prototype.map	&&	obj.map	===	Array.prototype.map)	return	

obj.map(iterate,	context);

		//	...

};

Note
You	can	watch	the	video	of	Brian	Lonsdorf’s	talk	at	www.youtube.com/watch?
v=m3svKOdZij.

Map,	in	terms	of	category	theory,	is	a	homomorphic	functor	interface	(more	on	this	in
Chapter	5,	Category	Theory).	And	we	should	be	able	to	define	map	as	a	functor	for
whatever	we	need	it	for.	So	that’s	not	very	functional	of	Underscore.

And	because	JavaScript	doesn’t	have	built-in	immutable	data,	a	functional	library	should
be	careful	to	not	allow	its	helper	functions	to	mutate	the	objects	passed	to	it.	A	good
example	of	this	problem	is	shown	below.	The	intention	of	the	snippet	is	to	return	a	new
selected	list	with	one	option	set	as	the	default.	But	what	actually	happens	is	that	the
selected	list	is	mutated	in	place.

function	getSelectedOptions(id,	value)	{

		options	=	document.querySelectorAll('#'	+	id	+	'	option');

		var	newOptions	=	_.map(options,	function(opt){

				if	(opt.text	==	value)	{

						opt.selected	=	true;

						opt.text	+=	'	(this	is	the	default)';

				}

				else	{

						opt.selected	=	false;

				}

				return	opt;

		});

		return	newOptions;

}

var	optionsHelp	=	getSelectedOptions('timezones',	'Chicago');

We	would	have	to	insert	the	line	opt	=	opt.cloneNode();	to	the	callback()	function	to



make	a	copy	of	each	object	within	the	list	being	passed	to	the	function.	Underscore’s
map()	function	cheats	to	boost	performance,	but	it	is	at	the	cost	of	functional	feng	shui.
The	native	Array.prototype.map()	function	wouldn’t	require	this	because	it	makes	a
copy,	but	it	also	doesn’t	work	on	nodelist	collections.

Underscore	may	be	less	than	ideal	for	mathematically-correct,	functional	programming,
but	it	was	never	intended	to	extend	or	transform	JavaScript	into	a	pure	functional
language.	It	defines	itself	as	a	JavaScript	library	that	provides	a	whole	mess	of	useful
functional	programming	helpers.	It	may	be	a	little	more	than	a	spurious	collection	of
functional-like	helpers,	but	it’s	no	serious	functional	library	either.

Is	there	a	better	library	out	there?	Perhaps	one	that	is	based	on	mathematics?



Fantasy	Land
Sometimes,	the	truth	is	stranger	than	fiction.

Fantasy	Land	is	a	collection	of	functional	base	libraries	and	a	formal	specification	for
how	to	implement	“algebraic	structures”	in	JavaScript.	More	specifically,	Fantasy	Land
specifies	the	interoperability	of	common	algebraic	structures,	or	algebras	for	short:
monads,	monoids,	setoids,	functors,	chains,	and	more.	Their	names	may	sound	scary,	but
they’re	just	a	set	of	values,	a	set	of	operators,	and	some	laws	it	must	obey.	In	other	words,
they’re	just	objects.

Here’s	how	it	works.	Each	algebra	is	a	separate	Fantasy	Land	specification	and	may	have
dependencies	on	other	algebras	that	need	to	be	implemented.

Some	of	the	algebra	specifications	are:

Setoids:

Implement	the	reflexivity,	symmetry	and	transitivity	laws
Define	the	equals()	method

Semigroups

Implement	the	associativity	law
Define	the	concat()	method

Monoid

Implement	right	identity	and	left	identity
Define	the	empty()	method

Functor

Implement	the	identity	and	composition	laws
Define	the	map()	method

The	list	goes	on	and	on.

We	don’t	necessarily	need	to	know	exactly	what	each	algebra	is	for	but	it	certainly	helps,



especially	if	you’re	writing	your	own	library	that	conforms	to	the	specifications.	It’s	not
just	abstract	nonsense,	it	outlines	a	means	of	implementing	a	high-level	abstraction	called
category	theory.	A	full	explanation	of	category	theory	can	be	found	in	Chapter	5,	Category
Theory.

Fantasy	Land	doesn’t	just	tell	us	how	to	implement	functional	programming,	it	does
provide	a	set	of	functional	modules	for	JavaScript.	However,	many	are	incomplete	and
documentation	is	pretty	sparse.	But	Fantasy	Land	isn’t	the	only	library	out	there	to
implement	its	open	source	specifications.	Others	have	too,	namely:	Bilby.js.



Bilby.js
What	the	heck	is	a	bilby?	No,	it’s	not	a	mythical	creature	that	might	exist	in	Fantasy	Land.
It	exists	here	on	Earth	as	a	freaky/cute	cross	between	a	mouse	and	a	rabbit.	Nonetheless,
bibly.js	library	is	compliant	with	Fantasy	Land	specifications.

In	fact,	bilby.js	is	a	serious	functional	library.	As	its	documentation	states,	it	is,	Serious,
meaning	it	applies	category	theory	to	enable	highly	abstract	code.	Functional,	meaning	it
enables	referentially	transparent	programs.	Wow,	that	is	pretty	serious.	The
documentation	located	at	http://bilby.brianmckenna.org/	goes	on	to	say	that	it	provides:

Immutable	multi-methods	for	ad-hoc	polymorphism
Functional	data	structures
Operator	overloading	for	functional	syntax
Automated	specification	testing	(ScalaCheck,	QuickCheck)

By	far	the	most	mature	library	that	conforms	to	the	Fantasy	Land	specifications	for
algebraic	structures,	Bilby.js	is	a	great	resource	for	fully	committing	to	the	functional
style.

Let’s	try	an	example:

//	environments	in	bilby	are	immutable	structure	for	multimethods

var	shapes1	=	bilby.environment()

		//	can	define	methods

		.method(

				'area',	//	methods	take	a	name

				function(a){return	typeof(a)	==	'rect'},	//	a	predicate

				function(a){return	a.x	*	a.y}	//	and	an	implementation

		)

		//	and	properties,	like	methods	with	predicates	that	always

		//	return	true

		.property(

					'name',			//	takes	a	name

					'shape');	//	and	a	function

//	now	we	can	overload	it

var	shapes2	=	shapes1

		.method(

				'area',	function(a){return	typeof(a)	==	'circle'},

				function(a){return	a.r	*	a.r	*	Math.PI}	);

var	shapes3	=	shapes2

		.method(

				'area',	function(a){return	typeof(a)	==	'triangle'},

				function(a){return	a.height	*	a.base	/	2}	);

//	and	now	we	can	do	something	like	this

var	objs	=	[{type:'circle',	r:5},	{type:'rect',	x:2,	y:3}];

var	areas	=	objs.map(shapes3.area);

//	and	this

var	totalArea	=	objs.map(shapes3.area).reduce(add);

This	is	category	theory	and	ad-hoc	polymorphism	in	action.	Again,	category	theory	will	be



covered	in	full	in	Chapter	5,	Category	Theory.

Note
Category	theory	is	a	recently	invigorated	branch	of	mathematics	that	functional
programmers	use	to	maximize	the	abstraction	and	usefulness	of	their	code.	But	there	is	a
major	drawback:	it’s	difficult	to	conceptualize	and	quickly	get	started	with.

The	truth	is	that	Bilby	and	Fantasy	Land	are	really	stretching	the	possibilities	of	functional
programming	in	JavaScript.	Although	it’s	exciting	to	see	the	evolution	of	computer
science,	the	world	may	just	not	be	ready	for	the	kind	of	hard-core	functional	style	that
Bibly	and	Fantasy	Land	are	pushing.

Maybe	such	a	grandiose	library	on	the	bleeding-edge	of	functional	JavaScript	is	not	our
thing.	After	all,	we	set	out	to	explore	the	functional	techniques	that	complement
JavaScript,	not	to	build	functional	programming	dogma.	Let’s	turn	our	attention	to	another
new	library,	Lazy.js.



Lazy.js
Lazy	is	a	utility	library	more	along	the	lines	of	the	underscore.js	library	but	with	a	lazy
evaluation	strategy.	Because	of	this,	Lazy	makes	the	impossible	possible	by	functionally
computing	results	of	series	that	won’t	be	available	with	immediate	interpretation.	It	also
boasts	a	significant	performance	boost.

The	Lazy.js	library	is	still	very	young.	But	it	has	a	lot	of	momentum	and	community
enthusiasm	behind	it.

The	idea	is	that,	in	Lazy,	everything	is	a	sequence	that	we	can	iterate	over.	Owing	to	the
way	the	library	controls	the	order	in	which	methods	are	applied,	many	really	cool	things
can	be	achieved:	asynchronous	iteration	(parallel	programming),	infinite	sequences,
functional	reactive	programming,	and	more.

The	following	examples	show	off	a	bit	of	everything:

//	Get	the	first	eight	lines	of	a	song's	lyrics

var	lyrics	=	"Lorem	ipsum	dolor	sit	amet,	consectetur	adipiscing	eli

//	Without	Lazy,	the	entire	string	is	first	split	into	lines

console.log(lyrics.split('\n').slice(0,3));	

//	With	Lazy,	the	text	is	only	split	into	the	first	8	lines

//	The	lyrics	can	even	be	infinitely	long!

console.log(Lazy(lyrics).split('\n').take(3));

//First	10	squares	that	are	evenly	divisible	by	3

var	oneTo1000	=	Lazy.range(1,	1000).toArray();	

var	sequence	=	Lazy(oneTo1000)

		.map(function(x)	{	return	x	*	x;	})

		.filter(function(x)	{	return	x	%	3	===	0;	})

		.take(10)

		.each(function(x)	{	console.log(x);	});

//	asynchronous	iteration	over	an	infinite	sequence

var	asyncSequence	=	Lazy.generate(function(x){return	x++})

		.async(100)	//	0.100s	intervals	between	elements

		.take(20)	//	only	compute	the	first	20		

		.each(function(e)	{	//	begin	iterating	over	the	sequence

				console.log(new	Date().getMilliseconds()	+	":	"	+	e);

		});

More	examples	and	use-cases	are	covered	in	Chapter	4,	Implementing	Functional
Programming	Techniques	in	JavaScript.

But	its	not	entirely	correct	to	fully	credit	the	Lazy.js	library	with	this	idea.	One	of	its
predecessors,	the	Bacon.js	library,	works	in	much	the	same	way.



Bacon.js
The	logo	of	Bacon.js	library	is	as	follows:

The	mustachioed	hipster	of	functional	programming	libraries,	Bacon.js	is	itself	a	library
for	functional	reactive	programming.	Functional	reactive	programming	just	means	that
functional	design	patterns	are	used	to	represent	values	that	are	reactive	and	always
changing,	like	the	position	of	the	mouse	on	the	screen,	or	the	price	of	a	company’s	stock.
In	the	same	way	that	Lazy	can	get	away	with	creating	infinite	sequences	by	not	calculating
the	value	until	it’s	needed,	Bacon	can	avoid	having	to	calculate	ever-changing	values	until
the	very	last	second.

What	are	called	sequences	in	Lazy	are	known	as	EventStreams	and	Properties	in	Bacon
because	they’re	more	suited	for	working	with	events	(onmouseover,	onkeydown,	and	so
on)	and	reactive	properties	(scroll	position,	mouse	position,	toggles,	and	so	on).

Bacon.fromEventTarget(document.body,	"click")

		.onValue(function()	{	alert("Bacon!")	});

Bacon	is	a	little	bit	older	than	Lazy	but	its	feature	set	is	about	half	the	size	and	its
community	enthusiasm	is	about	equal.



Honorable	mentions
There	are	simply	too	many	libraries	out	there	to	do	them	all	justice	within	the	scope	of	this
book.	Let’s	look	at	a	few	more	libraries	for	functional	programming	in	JavaScript.

Functional

Possibly	the	first	library	for	functional	programming	in	JavaScript,	Functional
is	a	library	that	includes	comprehensive	higher-order	function	support	as	well	as
string	lambdas

wu.js

Especially	prized	for	its	curryable()	function,	wu.js	library	is	a	very	nice
Library	for	functional	programming.	It	was	the	first	library	(that	I	know	of)	to
implement	lazy	evaluation,	getting	the	ball	rolling	for	Bacon.js,	Lazy.js	and
other	libraries
Yes,	it	is	named	after	the	infamous	rap	group	Wu	Tang	Clan

sloth.js

Very	similar	to	the	Lazy.js	libraries,	but	much	smaller

stream.js

The	stream.js	library	supports	infinite	streams	and	not	much	else
Absolutely	tiny	in	size

Lo-Dash.js

As	the	name	might	imply,	the	lo-dash.js	library	was	inspired	by	the
underscore.js	library
Highly	optimized

Sugar

Sugar	is	a	support	library	for	functional	programming	techniques	in	JavaScript,
like	Underscore,	but	with	some	key	differences	in	how	it’s	implemented.
Instead	of	doing	_.pluck(myObjs,	'value')	in	Underscore,	it’s	just
myObjs.map('value')	in	Sugar.	This	means	that	it	modifies	native	JavaScript
objects,	so	there	is	a	small	risk	of	it	not	playing	nicely	with	other	libraries	that
do	the	same	such	as	Prototype.
Very	good	documentation,	unit	tests,	analyzers,	and	more.

from.js

A	new	functional	library	and	LINQ	(Language	Integrated	Query)	engine	for
JavaScript	that	supports	most	of	the	same	LINQ	functions	that	.NET	provides
100%	lazy	evaluation	and	supports	lambda	expressions
Very	young	but	documentation	is	excellent

JSLINQ



Another	functional	LINQ	engine	for	JavaScript
Much	older	and	more	mature	than	from.js	library

Boiler.js

Another	utility	library	that	extends	JavaScript’s	functional	methods	to	more
primitives:	strings,	numbers,	objects,	collections	and	arrays

Folktale

Like	the	Bilby.js	library,	Folktale	is	another	new	library	that	implements	the
Fantasy	Land	specifications.	And	like	its	forefather,	Folktale	is	also	a	collection
of	libraries	for	functional	programming	in	JavaScript.	It’s	very	young	but	could
have	a	bright	future.

jQuery

Surprised	to	see	jQuery	mentioned	here?	Although	jQuery	is	not	a	tool	used	to
perform	functional	programming,	it	nevertheless	is	functional	itself.	jQuery
might	be	one	of	the	most	widely	used	libraries	that	has	its	roots	in	functional
programming.
The	jQuery	object	is	actually	a	monad.	jQuery	uses	the	monadic	laws	to	enable
method	chaining:

$('#mydiv').fadeIn().css('left':	50).alert('hi!');

A	full	explanation	of	this	can	be	found	in	Chapter	7,	Functional	and	Object-oriented
Programming	in	JavaScript.

And	some	of	its	methods	are	higher-order:

$('li').css('left':	function(index){return	index*50});

As	of	jQuery	1.8,	the	deferred.then	parameter	implements	a	functional	concept
known	as	Promises.
jQuery	is	an	abstraction	layer,	mainly	for	the	DOM.	It’s	not	a	framework	or	a	toolkit,
just	a	way	to	use	abstraction	to	increase	code-reuse	and	reduce	ugly	code.	And	isn’t
that	what	functional	programming	is	all	about?





Development	and	production
environments
It	does	not	matter	in	terms	of	programming	style	what	type	of	environment	the	application
is	being	developed	in	and	will	be	deployed	in.	But	it	does	matter	to	the	libraries	a	lot.



Browsers
The	majority	of	JavaScript	applications	are	designed	to	run	on	the	client	side,	that	is,	in
the	client’s	browser.	Browser-based	environments	are	excellent	for	development	because
browsers	are	ubiquitous,	you	can	work	on	the	code	right	on	your	local	machine,	the
interpreter	is	the	browser’s	JavaScript	engine,	and	all	browsers	have	a	developer	console.
Firefox’s	FireBug	provides	very	useful	error	messages	and	allows	for	break-points	and
more,	but	it’s	often	helpful	to	run	the	same	code	in	Chrome	and	Safari	to	cross-reference
the	error	output.	Even	Internet	Explorer	contains	developer	tools.

The	problem	with	browsers	is	that	they	evaluate	JavaScript	differently!	Though	it’s	not
common,	it	is	possible	to	write	code	that	returns	very	different	results	in	different
browsers.	But	usually	the	differences	are	in	the	way	they	treat	the	document	object	model
and	not	how	prototypes	and	functions	work.	Obviously,	Math.sqrt(4)	method	returns	2	to
all	browsers	and	shells.	But	the	scrollLeft	method	depends	on	the	browser’s	layout
policies.

Writing	browser-specific	code	is	a	waste	of	time,	and	that’s	another	reason	why	libraries
should	be	used.



Server-side	JavaScript
The	Node.js	library	has	become	the	standard	platform	for	creating	server-side	and
network-based	applications.	Can	functional	programming	be	used	for	server-side
application	programming?	Yes!	Ok,	but	do	there	exist	any	functional	libraries	that	are
designed	for	this	performance-critical	environment?	The	answer	to	that	is	also:	yes.

All	the	functional	libraries	outlined	in	this	chapter	will	work	in	the	Node.js	library,	and
many	depend	on	the	browserify.js	module	to	work	with	browser	elements.

A	functional	use	case	in	the	server-side	environment
In	our	brave	new	world	of	network	systems,	server-side	application	developers	are	often
concerned	with	concurrency,	and	rightly	so.	The	classic	example	is	an	application	that
allows	multiple	users	to	modify	the	same	file.	But	if	they	try	to	modify	it	at	the	same	time,
you	will	get	into	an	ugly	mess.	This	is	the	maintenance	of	state	problem	that	has	plagued
programmers	for	decades.

Assume	the	following	scenario:

1.	 One	morning,	Adam	opens	a	report	for	editing	but	he	doesn’t	save	it	before	leaving
for	lunch.

2.	 Billy	opens	the	same	report,	adds	his	notes,	and	then	saves	it.
3.	 Adam	comes	back	from	lunch,	adds	his	notes	to	the	report,	and	then	saves	it,

unknowingly	overwriting	Billy’s	notes.
4.	 The	next	day,	Billy	finds	out	that	his	notes	are	missing.	His	boss	yells	at	him;

everybody	gets	mad	and	they	gang	up	on	the	misguided	application	developer	who
unfairly	loses	his	job.

For	a	long	time,	the	solution	to	this	problem	was	to	create	a	state	about	the	file.	Toggle	a
lock	status	to	on	when	someone	begins	editing	it,	which	prevents	others	from	being	able	to
edit	it,	and	then	toggle	it	to	off	once	they	save	it.	In	our	scenario,	Billy	would	not	be	able
to	do	his	work	until	Adam	gets	back	from	lunch.	And	if	it’s	never	saved	(if,	say,	Adam
decided	to	quit	his	job	in	the	middle	of	the	lunch	break),	then	no	one	will	ever	be	able	to
edit	it.

This	is	where	functional	programming’s	ideas	about	immutable	data	and	state	(or	lack
thereof)	can	really	be	put	to	work.	Instead	of	having	users	modify	the	file	directly,	with	a
functional	approach	they	would	modify	a	copy	of	the	file,	which	is	a	new	revision.	If	they
go	to	save	the	revision	and	a	new	revision	already	exists,	then	we	know	that	someone	else
has	already	modified	the	old	one.	Crisis	averted.

Now	the	scenario	from	before	would	unfold	like	this:

1.	 One	morning,	Adam	opens	a	report	for	editing.	But	he	doesn’t	save	it	before	going	to
lunch.

2.	 Billy	opens	the	same	report,	adds	his	notes,	and	saves	it	as	a	new	revision.
3.	 Adam	returns	from	lunch	to	add	his	notes.	When	he	attempts	to	save	the	new



revision,	the	application	tells	him	that	a	newer	revision	now	exists.
4.	 Adam	opens	the	new	revisions,	adds	his	notes	to	it,	and	saves	another	new	revision.
5.	 By	looking	at	the	revision	history,	the	boss	sees	that	everything	is	working	smoothly.

Everyone	is	happy	and	the	application	developer	gets	a	promotion	and	a	raise.

This	is	known	as	event	sourcing.	There	is	no	explicit	state	to	be	maintained,	only	events.
The	process	is	much	cleaner	and	there	is	a	clear	history	of	events	that	can	be	reviewed.

This	idea	and	many	others	are	why	functional	programming	in	server-side	environments	is
on	the	rise.



CLI
Although	web	and	the	node.js	library	are	the	two	main	JavaScript	environments,	some
pragmatic	and	adventurous	users	are	finding	ways	to	use	JavaScript	in	the	command	line.

Using	JavaScript	as	a	Command	Line	Interface	(CLI)	scripting	language	might	be	one
of	the	best	opportunities	to	apply	function	programming.	Imagine	being	able	to	use	lazy
evaluation	when	searching	for	local	files	or	to	rewrite	an	entire	bash	script	into	a
functional	JavaScript	one-liner.



Using	functional	libraries	with	other	JavaScript
modules
Web	applications	are	made	up	of	all	sorts	of	things:	frameworks,	libraries,	APIs	and	more.
They	can	work	along	side	each	other	as	dependents,	plugins,	or	just	as	coexisting	objects.

Backbone.js

An	MVP	(model-view-provider)	framework	with	a	RESTful	JSON	interface
Requires	the	underscore.js	library,	Backbone’s	only	hard	dependency

jQuery

The	Bacon.js	library	has	bindings	for	mixing	with	jQuery
Underscore	and	jQuery	complement	each	other	very	well

Prototype	JavaScript	Framework

Provides	JavaScript	with	collection	functions	in	the	manner	closest	to	Ruby’s
Enumerable

Sugar.js

Modifies	native	objects	and	their	methods
Must	be	careful	when	mixing	with	other	libraries,	especially	Prototype



Functional	languages	that	compile	into	JavaScript
Sometimes	the	thick	veneer	of	C-like	syntax	over	JavaScript’s	inner	functionality	can	be
enough	to	make	you	want	to	switch	to	another	functional	language.	Well,	you	can!

Clojure	and	ClojureScript

Closure	is	a	modern	Lisp	implementation	and	a	full-featured	functional
language
ClojureScript	trans-compiles	Clojure	into	JavaScript

CoffeeScript

CoffeeScript	is	the	name	of	both	a	functional	language	and	a	compiler	for	trans-
compiling	the	language	into	JavaScript
1-to-1	mapping	between	expressions	in	CoffeeScript	and	expression	in
JavaScript

There	are	many	more	out	there,	including	Pyjs,	Roy,	TypeScript,	UHC	and	more.





Summary
Which	library	you	choose	to	use	depends	on	what	your	needs	are.	Need	functional	reactive
programming	to	handle	events	and	dynamic	values?	Use	the	Bacon.js	library.	Only	need
infinite	streams	and	nothing	else?	Use	the	stream.js	library.	Want	to	complement	jQuery
with	functional	helpers?	Try	the	underscore.js	library.	Need	a	structured	environment
for	serious	ad	hoc	polymorphism?	Check	out	the	bilby.js	library.	Need	a	well-rounded
tool	for	functional	programming?	Use	the	Lazy.js	library.	Not	happy	with	any	of	these
options?	Write	your	own!

Any	library	is	only	as	good	as	the	way	it’s	used.	Although	a	few	of	the	libraries	outlined	in
this	chapter	have	a	few	flaws,	most	faults	occur	somewhere	between	the	keyboard	and	the
chair.	It’s	up	to	you	to	use	the	libraries	correctly	and	to	suit	your	needs.

And	if	we’re	importing	code	libraries	into	our	JavaScript	environment,	then	maybe	we	can
import	ideas	and	principles	too.	Maybe	we	can	channel	The	Zen	of	Python,	by	Tim	Peter:

Beautiful	is	better	than	ugly

Explicit	is	better	than	implicit.

Simple	is	better	than	complex.

Complex	is	better	than	complicated.

Flat	is	better	than	nested.

Sparse	is	better	than	dense.

Readability	counts.

Special	cases	aren’t	special	enough	to	break	the	rules.

Although	practicality	beats	purity.

Errors	should	never	pass	silently.

Unless	explicitly	silenced.

In	the	face	of	ambiguity,	refuse	the	temptation	to	guess.

There	should	be	one—and	preferably	only	one—obvious	way	to	do	it.

Although	that	way	may	not	be	obvious	at	first	unless	you’re	Dutch.

Now	is	better	than	never.

Although	never	is	often	better	than	“right”	now.

If	the	implementation	is	hard	to	explain,	it’s	a	bad	idea.

If	the	implementation	is	easy	to	explain,	it	may	be	a	good	idea.

Namespaces	are	one	honking	great	idea—let’s	do	more	of	those!





Chapter	4.	Implementing	Functional
Programming	Techniques	in	JavaScript
Hold	on	to	your	hats	because	we’re	really	going	to	get	into	the	functional	mind-set	now.

In	this	chapter,	we’re	going	to	do	the	following:

Put	all	the	core	concepts	together	into	a	cohesive	paradigm
Explore	the	beauty	that	functional	programming	has	to	offer	when	we	fully	commit
to	the	style
Step	through	the	logical	progression	of	functional	patterns	as	they	build	upon	each
other
All	the	while,	we	will	build	up	a	simple	application	that	does	some	pretty	cool	stuff

You	may	have	noticed	a	few	concepts	that	were	brought	up	in	the	last	chapter	when
dealing	with	functional	libraries	for	JavaScript,	but	not	in	Chapter	2,	Fundamentals	of
Functional	Programming.	Well,	that	was	for	a	reason!	Compositions,	currying,	partial
application,	and	more.	Let’s	explore	why	and	how	these	libraries	implemented	those
concepts.

Functional	programming	can	come	in	a	variety	of	flavors	and	patterns.	This	chapter	will
cover	many	different	styles	of	functional	programming:

Data	generic	programming
Mostly	functional	programming
Functional	reactive	programming	and	more

This	chapter,	however,	will	be	as	style-unbiased	as	possible.	Without	leaning	too	hard	on
one	style	of	functional	programming	over	another,	the	overall	goal	is	to	show	that	there
are	better	ways	to	write	code	than	what	is	often	accepted	as	the	correct	and	only	way.
Once	you	free	your	mind	about	the	preconceptions	of	what	is	the	right	way	and	what	is	not
the	right	way	to	write	code,	you	can	do	whatever	you	want.	When	you	just	write	code	with
childlike	abandon	for	no	reason	other	than	the	fact	that	you	like	it	and	when	you’re	not
concerned	about	conforming	to	the	traditional	way	of	doing	things,	then	the	possibilities
are	endless.



Partial	function	application	and	currying
Many	languages	support	optional	arguments,	but	not	in	JavaScript.	JavaScript	uses	a
different	pattern	entirely	that	allows	for	any	number	of	arguments	to	be	passed	to	a
function.	This	leaves	the	door	open	for	some	very	interesting	and	unusual	design	patterns.
Functions	can	be	applied	in	part	or	in	whole.

Partial	application	in	JavaScript	is	the	process	of	binding	values	to	one	or	more	arguments
of	a	function	that	returns	another	function	that	accepts	the	remaining,	unbound	arguments.
Similarly,	currying	is	the	process	of	transforming	a	function	with	many	arguments	into	a
function	with	one	argument	that	returns	another	function	that	takes	more	arguments	as
needed.

The	difference	between	the	two	may	not	be	clear	now,	but	it	will	be	obvious	in	the	end.



Function	manipulation
Actually,	before	we	go	any	further	and	explain	just	how	to	implement	partial	application
and	currying,	we	need	a	review.	If	we’re	going	to	tear	JavaScript’s	thick	veneer	of	C-like
syntax	right	off	and	expose	it’s	functional	underbelly,	then	we’re	going	to	need	to
understand	how	primitives,	functions,	and	prototypes	in	JavaScript	work;	we	would	never
need	to	consider	these	if	we	just	wanted	to	set	some	cookies	or	validate	some	form	fields.

Apply,	call,	and	the	this	keyword
In	pure	functional	languages,	functions	are	not	invoked;	they’re	applied.	JavaScript	works
the	same	way	and	even	provides	utilities	for	manually	calling	and	applying	functions.	And
it’s	all	about	the	this	keyword,	which,	of	course,	is	the	object	that	the	function	is	a
member	of.

The	call()	function	lets	you	define	the	this	keyword	as	the	first	argument.	It	works	as
follows:

console.log(['Hello',	'world'].join('	'))	//	normal	way

console.log(Array.prototype.join.call(['Hello',	'world'],	'	'));	//	using	

call

The	call()	function	can	be	used,	for	example,	to	invoke	anonymous	functions:

console.log((function(){console.log(this.length)}).call([1,2,3]));

The	apply()	function	is	very	similar	to	the	call()	function,	but	a	little	more	useful:

console.log(Math.max(1,2,3));	//	returns	3

console.log(Math.max([1,2,3]));	//	won't	work	for	arrays	though

console.log(Math.max.apply(null,	[1,2,3]));	//	but	this	will	work

The	fundamental	difference	is	that,	while	the	call()	function	accepts	a	list	of	arguments,
the	apply()	function	accepts	an	array	of	arguments.

The	call()	and	apply()	functions	allow	you	to	write	a	function	once	and	then	inherit	it	in
other	objects	without	writing	the	function	over	again.	And	they	are	both	members
themselves	of	the	Function	argument.

Note
This	is	bonus	material,	but	when	you	use	the	call()	function	on	itself,	some	really	cool
things	can	happen:

//	these	two	lines	are	equivalent

func.call(thisValue);

Function.prototype.call.call(func,	thisValue);

Binding	arguments
The	bind()	function	allows	you	to	apply	a	method	to	one	object	with	the	this	keyword
assigned	to	another.	Internally,	it’s	the	same	as	the	call()	function,	but	it’s	chained	to	the
method	and	returns	a	new	bounded	function.



It’s	especially	useful	for	callbacks,	as	shown	in	the	following	code	snippet:

function	Drum(){

		this.noise	=	'boom';

		this.duration	=	1000;

		this.goBoom	=	function(){console.log(this.noise)};

}

var	drum	=	new	Drum();

setInterval(drum.goBoom.bind(drum),	drum.duration);

This	solves	a	lot	of	problems	in	object-oriented	frameworks,	such	as	Dojo,	specifically	the
problems	of	maintaining	the	state	when	using	classes	that	define	their	own	handler
functions.	But	we	can	use	the	bind()	function	for	functional	programming	too.

Tip
The	bind()	function	actually	does	partial	application	on	its	own,	though	in	a	very	limited
way.

Function	factories
Remember	our	section	on	closures	in	Chapter	2,	Fundamentals	of	Functional
Programming?	Closures	are	the	constructs	that	makes	it	possible	to	create	a	useful
JavaScript	programming	pattern	known	as	function	factories.	They	allow	us	to	manually
bind	arguments	to	functions.

First,	we’ll	need	a	function	that	binds	an	argument	to	another	function:

function	bindFirstArg(func,	a)	{

		return	function(b)	{

				return	func(a,	b);

		};

}

Then	we	can	use	this	to	create	more	generic	functions:

var	powersOfTwo	=	bindFirstArg(Math.pow,	2);

console.log(powersOfTwo(3));	//	8

console.log(powersOfTwo(5));	//	32

And	it	can	work	on	the	other	argument	too:

function	bindSecondArg(func,	b)	{

		return	function(a)	{

				return	func(a,	b);

		};

}

var	squareOf	=	bindSecondArg(Math.pow,	2);

var	cubeOf	=	bindSecondArg(Math.pow,	3);

console.log(squareOf(3));	//	9

console.log(squareOf(4));	//	16

console.log(cubeOf(3));			//	27

console.log(cubeOf(4));			//	64

The	ability	to	create	generic	functions	is	very	important	in	functional	programming.	But
there’s	a	clever	trick	to	making	this	process	even	more	generalized.	The	bindFirstArg()



function	itself	takes	two	arguments,	the	first	being	a	function.	If	we	pass	the
bindFirstArg	function	as	a	function	to	itself,	we	can	create	bindable	functions.	This	can
be	best	described	with	the	following	example:

var	makePowersOf	=	bindFirstArg(bindFirstArg,	Math.pow);

var	powersOfThree	=	makePowersOf(3);

console.log(powersOfThree(2));	//	9

console.log(powersOfThree(3));	//	27

This	is	why	they’re	called	function	factories.



Partial	application
Notice	that	our	function	factory	example’s	bindFirstArg()	and	bindSecondArg()
functions	only	work	for	functions	that	have	exactly	two	arguments.	We	could	write	new
ones	that	work	for	different	numbers	of	arguments,	but	that	would	work	away	from	our
model	of	generalization.

What	we	need	is	partial	application.

Note
Partial	application	is	the	process	of	binding	values	to	one	or	more	arguments	of	a	function
that	returns	a	partially-applied	function	that	accepts	the	remaining,	unbound	arguments.

Unlike	the	bind()	function	and	other	built-in	methods	of	the	Function	object,	we’ll	have
to	create	our	own	functions	for	partial	application	and	currying.	There	are	two	distinct
ways	to	do	this.

As	a	stand-alone	function,	that	is,	var	partial	=	function(func){...
As	a	polyfill,	that	is,	Function.prototype.partial	=	function(){...

Polyfills	are	used	to	augment	prototypes	with	new	functions	and	will	allow	us	to	call	our
new	functions	as	methods	of	the	function	that	we	want	to	partially	apply.	Just	like	this:
myfunction.partial(arg1,	arg2,	…);

Partial	application	from	the	left
Here’s	where	JavaScript’s	apply()	and	call()	utilities	become	useful	for	us.	Let’s	look	at
a	possible	polyfill	for	the	Function	object:

Function.prototype.partialApply	=	function(){

		var	func	=	this;	

		args	=	Array.prototype.slice.call(arguments);

		return	function(){

				return	func.apply(this,	args.concat(

						Array.prototype.slice.call(arguments)

				));

		};

};

As	you	can	see,	it	works	by	slicing	the	arguments	special	variable.

Note
Every	function	has	a	special	local	variable	called	arguments	that	is	an	array-like	object	of
the	arguments	passed	to	it.	It’s	technically	not	an	array.	Therefore	it	does	not	have	any	of
the	Array	methods	such	as	slice	and	forEach.	That’s	why	we	need	to	use	Array’s
slice.call	method	to	slice	the	arguments.

And	now	let’s	see	what	happens	when	we	use	it	in	an	example.	This	time,	let’s	get	away
from	the	math	and	go	for	something	a	little	more	useful.	We’ll	create	a	little	application
that	converts	numbers	to	hexadecimal	values.

function	nums2hex()	{



		function	componentToHex(component)	{

				var	hex	=	component.toString(16);

				//	make	sure	the	return	value	is	2	digits,	i.e.	0c	or	12

				if	(hex.length	==	1)	{

						return	"0"	+	hex;

				}

				else	{

						return	hex;

				}

		}

		return	Array.prototype.map.call(arguments,	componentToHex).join('');

}

//	the	function	works	on	any	number	of	inputs

console.log(nums2hex());	//	''

console.log(nums2hex(100,200));	//	'64c8'

console.log(nums2hex(100,	200,	255,	0,	123));	//	'64c8ff007b'

//	but	we	can	use	the	partial	function	to	partially	apply

//	arguments,	such	as	the	OUI	of	a	mac	address

var	myOUI	=	123;

var	getMacAddress	=	nums2hex.partialApply(myOUI);

console.log(getMacAddress());	//	'7b'

console.log(getMacAddress(100,	200,	2,	123,	66,	0,	1));	//	

'7b64c8027b420001'

//	or	we	can	convert	rgb	values	of	red	only	to	hexadecimal

var	shadesOfRed	=	nums2hex.partialApply(255);

console.log(shadesOfRed(123,	0));			//	'ff7b00'

console.log(shadesOfRed(100,	200));	//	'ff64c8'

This	example	shows	that	we	can	partially	apply	arguments	to	a	generic	function	and	get	a
new	function	in	return.	This	first	example	is	left-to-right,	which	means	that	we	can	only
partially	apply	the	first,	left-most	arguments.

Partial	application	from	the	right
In	order	to	apply	arguments	from	the	right,	we	can	define	another	polyfill.

Function.prototype.partialApplyRight	=	function(){

		var	func	=	this;	

		args	=	Array.prototype.slice.call(arguments);

		return	function(){

				return	func.apply(

						this,

						[].slice.call(arguments,	0)

						.concat(args));

		};

};

var	shadesOfBlue	=	nums2hex.partialApplyRight(255);

console.log(shadesOfBlue(123,	0));			//	'7b00ff'

console.log(shadesOfBlue(100,	200));	//	'64c8ff'

var	someShadesOfGreen	=	nums2hex.partialApplyRight(255,	0);

console.log(shadesOfGreen(123));			//	'7bff00'



console.log(shadesOfGreen(100));			//	'64ff00'

Partial	application	has	allowed	us	to	take	a	very	generic	function	and	extract	more	specific
functions	out	of	it.	But	the	biggest	flaw	in	this	method	is	that	the	way	in	which	the
arguments	are	passed,	as	in	how	many	and	in	what	order,	can	be	ambiguous.	And
ambiguity	is	never	a	good	thing	in	programming.	There’s	a	better	way	to	do	this:	currying.



Currying
Currying	is	the	process	of	transforming	a	function	with	many	arguments	into	a	function
with	one	argument	that	returns	another	function	that	takes	more	arguments	as	needed.
Formally,	a	function	with	N	arguments	can	be	transformed	into	a	function	chain	of	N
functions,	each	with	only	one	argument.

A	common	question	is:	what	is	the	difference	between	partial	application	and	currying?
While	it’s	true	that	partial	application	returns	a	value	right	away	and	currying	only	returns
another	curried	function	that	takes	the	next	argument,	the	fundamental	difference	is	that
currying	allows	for	much	better	control	of	how	arguments	are	passed	to	the	function.	We’ll
see	just	how	that’s	true,	but	first	we	need	to	create	function	to	perform	the	currying.

Here’s	our	polyfill	for	adding	currying	to	the	Function	prototype:

Function.prototype.curry	=	function	(numArgs)	{

		var	func	=	this;

		numArgs	=	numArgs	||	func.length;

		//	recursively	acquire	the	arguments

		function	subCurry(prev)	{

				return	function	(arg)	{

						var	args	=	prev.concat(arg);

						if	(args.length	<	numArgs)	{

								//	recursive	case:	we	still	need	more	args

								return	subCurry(args);

						}

						else	{

								//	base	case:	apply	the	function

								return	func.apply(this,	args);

						}

				};

		}

		return	subCurry([]);

};

The	numArgs	argument	lets	us	optionally	specify	the	number	of	arguments	the	function
being	curried	needs	if	it’s	not	explicitly	defined.

Let’s	look	at	how	to	use	it	within	our	hexadecimal	application.	We’ll	write	a	function	that
converts	RGB	values	to	a	hexadecimal	string	that	is	appropriate	for	HTML:

function	rgb2hex(r,	g,	b)	{

		//	nums2hex	is	previously	defined	in	this	chapter

		return	'#'	+	nums2hex(r)	+	nums2hex(g)	+	nums2hex(b);

}

var	hexColors	=	rgb2hex.curry();

console.log(hexColors(11))	//	returns	a	curried	function

console.log(hexColors(11,12,123))	//	returns	a	curried	function

console.log(hexColors(11)(12)(123))	//	returns	#0b0c7b

console.log(hexColors(210)(12)(0))		//	returns	#d20c00

It	will	return	the	curried	function	until	all	needed	arguments	are	passed	in.	And	they’re
passed	in	the	same	left-to-right	order	as	defined	by	the	function	being	curried.



But	we	can	step	it	up	a	notch	and	define	the	more	specific	functions	that	we	need	as
follows:

var	reds	=	function(g,b){return	hexColors(255)(g)(b)};

var	greens	=	function(r,b){return	hexColors(r)(255)(b)};

var	blues		=	function(r,g){return	hexColors(r)(g)(255)};

console.log(reds(11,	12))			//	returns	#ff0b0c

console.log(greens(11,	12))	//	returns	#0bff0c

console.log(blues(11,	12))		//	returns	#0b0cff

So	that’s	a	nice	way	to	use	currying.	But	if	we	just	want	to	curry	our	nums2hex()	function
directly,	we	run	into	a	little	bit	of	trouble.	And	that’s	because	the	function	doesn’t	define
any	arguments,	it	just	lets	you	pass	as	many	arguments	in	as	you	want.	So	we	have	to
define	the	number	of	arguments.	We	do	that	with	the	optional	parameter	to	the	curry
function	that	allows	us	to	set	the	number	of	arguments	of	the	function	being	curried.

var	hexs	=	nums2hex.curry(2);

console.log(hexs(11)(12));					//	returns	0b0c

console.log(hexs(11));									//	returns	function

console.log(hexs(110)(12)(0));	//	incorrect

Therefore	currying	does	not	work	well	with	functions	that	accept	variable	numbers	of
arguments.	For	something	like	that,	partial	application	is	preferred.

All	of	this	isn’t	just	for	the	benefit	of	function	factories	and	code	reuse.	Currying	and
partial	application	play	into	a	bigger	pattern	known	as	composition.





Function	composition
Finally,	we	have	arrived	at	function	composition.

In	functional	programming,	we	want	everything	to	be	a	function.	We	especially	want
unary	functions	if	possible.	If	we	can	convert	all	functions	to	unary	functions,	then
magical	things	can	happen.

Note
Unary	functions	are	functions	that	take	only	a	single	input.	Functions	with	multiple	inputs
are	polyadic,	but	we	usually	say	binary	for	functions	that	accept	two	inputs	and	ternary
for	three	inputs.	Some	functions	don’t	accept	a	specific	number	of	inputs;	we	call	those
variadic.

Manipulating	functions	and	their	acceptable	number	of	inputs	can	be	extremely
expressive.	In	this	section,	we	will	explore	how	to	compose	new	functions	from	smaller
functions:	little	units	of	logic	that	combine	into	whole	programs	that	are	greater	than	the
sum	of	the	functions	on	their	own.



Compose
Composing	functions	allows	us	to	build	complex	functions	from	many	simple,	generic
functions.	By	treating	functions	as	building	blocks	for	other	functions,	we	can	build	truly
modular	applications	with	excellent	readability	and	maintainability.

Before	we	define	the	compose()	polyfill,	you	can	see	how	it	all	works	with	these
following	examples:

var	roundedSqrt	=	Math.round.compose(Math.sqrt)

console.log(	roundedSqrt(5)	);	//	Returns:	2

var	squaredDate	=		roundedSqrt.compose(Date.parse)

console.log(	squaredDate("January	1,	2014")	);	//	Returns:	1178370	

In	math,	the	composition	of	the	f	and	g	variables	is	defined	as	f(g(x)).	In	JavaScript,	this
can	be	written	as:

var	compose	=	function(f,	g)	{

		return	function(x)	{

				return	f(g(x));

		};

};

But	if	we	left	it	at	that,	we	would	lose	track	of	the	this	keyword,	among	other	problems.
The	solution	is	to	use	the	apply()	and	call()	utilities.	Compared	to	curry,	the	compose()
polyfill	is	quite	simple.

Function.prototype.compose	=	function(prevFunc)	{

		var	nextFunc	=	this;

		return	function()	{

				return	nextFunc.call(this,prevFunc.apply(this,arguments));

		}

}

To	show	how	it’s	used,	let’s	build	a	completely	contrived	example,	as	follows:

function	function1(a){return	a	+	'	1';}

function	function2(b){return	b	+	'	2';}

function	function3(c){return	c	+	'	3';}

var	composition	=	function3.compose(function2).compose(function1);

console.log(	composition('count')	);	//	returns	'count	1	2	3'

Did	you	notice	that	the	function3	parameter	was	applied	first?	This	is	very	important.
Functions	are	applied	from	right	to	left.

Sequence	–	compose	in	reverse
Because	many	people	like	to	read	things	from	the	left	to	the	right,	it	might	make	sense	to
apply	the	functions	in	that	order	too.	We’ll	call	this	a	sequence	instead	of	a	composition.

To	reverse	the	order,	all	we	need	to	do	is	swap	the	nextFunc	and	prevFunc	parameters.

Function.prototype.sequence		=	function(prevFunc)	{

		var	nextFunc	=	this;



		return	function()	{

				return	prevFunc.call(this,nextFunc.apply(this,arguments));

		}

}

This	allows	us	to	now	call	the	functions	in	a	more	natural	order.

var	sequences	=	function1.sequence(function2).sequence(function3);

console.log(	sequences('count')	);	//	returns	'count	1	2	3'



Compositions	versus	chains
Here	are	five	different	implementations	of	the	same	floorSqrt()	functional	composition.
They	seem	to	be	identical,	but	they	deserve	scrutiny.

function	floorSqrt1(num)	{

		var	sqrtNum	=	Math.sqrt(num);

		var	floorSqrt	=	Math.floor(sqrtNum);

		var	stringNum	=	String(floorSqrt);

		return	stringNum;

}

function	floorSqrt2(num)	{

		return	String(Math.floor(Math.sqrt(num)));

}

function	floorSqrt3(num)	{

		return	[num].map(Math.sqrt).map(Math.floor).toString();

}

var	floorSqrt4	=	String.compose(Math.floor).compose(Math.sqrt);

var	floorSqrt5	=	Math.sqrt.sequence(Math.floor).sequence(String);

//	all	functions	can	be	called	like	this:

floorSqrt<N>(17);	//	Returns:	4

But	there	are	a	few	key	differences	we	should	go	over:

Obviously	the	first	method	is	verbose	and	inefficient.
The	second	method	is	a	nice	one-liner,	but	this	approach	becomes	very	unreadable
after	only	a	few	functions	are	applied.

Note
To	say	that	less	code	is	better	is	missing	the	point.	Code	is	more	maintainable	when
the	effective	instructions	are	more	concise.	If	you	reduce	the	number	of	characters	on
the	screen	without	changing	the	effective	instructions	carried	out,	this	has	the
complete	opposite	effect—code	becomes	harder	to	understand,	and	decidedly	less
maintainable;	for	example,	when	we	use	nested	ternary	operators,	or	we	chain	several
commands	together	on	a	single	line.	These	approaches	reduce	the	amount	of	‘code	on
the	screen’,	but	they	don’t	reduce	the	number	of	steps	actually	being	specified	by	that
code.	So	the	effect	is	to	obfuscate	and	make	the	code	harder	to	understand.	The	kind
of	conciseness	that	makes	code	easier	to	maintain	is	that	which	effectively	reduces
the	specified	instructions	(for	example,	by	using	a	simpler	algorithm	that
accomplishes	the	same	result	with	fewer	and/or	simpler	steps),	or	when	we	simply
replace	code	with	a	message,	for	instance,	invoking	a	third-party	library	with	a	well-
documented	API.

The	third	approach	is	a	chain	of	array	functions,	notably	the	map	function.	This	works
fairly	well,	but	it	is	not	mathematically	correct.
Here’s	our	compose()	function	in	action.	All	methods	are	forced	to	be	unary,	pure
functions	that	encourage	the	use	of	better,	simpler,	and	smaller	functions	that	do	one



thing	and	do	it	well.
The	last	approach	uses	the	compose()	function	in	reverse	sequence,	which	is	just	as
valid.



Programming	with	compose
The	most	important	aspect	of	compose	is	that,	aside	from	the	first	function	that	is	applied,
it	works	best	with	pure,	unary	functions:	functions	that	take	only	one	argument.

The	output	of	the	first	function	that	is	applied	is	sent	to	the	next	function.	This	means	that
the	function	must	accept	what	the	previous	function	passed	to	it.	This	is	the	main
influence	behind	type	signatures.

Note
Type	Signatures	are	used	to	explicitly	declare	what	types	of	input	the	function	accepts	and
what	type	it	outputs.	They	were	first	used	by	Haskell,	which	actually	used	them	in	the
function	definitions	to	be	used	by	the	compiler.	But,	in	JavaScript,	we	just	put	them	in	a
code	comment.	They	look	something	like	this:	foo	::	arg1	->	argN	->	output

Examples:

//	getStringLength	::	String	->	Intfunction	getStringLength(s){return	

s.length};

//	concatDates	::	Date	->	Date	->	[Date]function	concatDates(d1,d2){return	

[d1,	d2]};

//	pureFunc	::	(int	->	Bool)	->	[int]	->	[int]pureFunc(func,	arr){return	

arr.filter(func)}	

In	order	to	truly	reap	the	benefits	of	compose,	any	application	will	need	a	hefty	collection
of	unary,	pure	functions.	These	are	the	building	blocks	that	are	composed	into	larger
functions	that,	in	turn,	are	used	to	make	applications	that	are	very	modular,	reliable,	and
maintainable.

Let’s	go	through	an	example.	First	we’ll	need	many	building-block	functions.	Some	of
them	build	upon	the	others	as	follows:

//	stringToArray	::	String	->	[Char]

function	stringToArray(s)	{	return	s.split('');	}

//	arrayToString	::	[Char]	->	String

function	arrayToString(a)	{	return	a.join('');	}

//	nextChar	::	Char	->	Char

function	nextChar(c)	{	

		return	String.fromCharCode(c.charCodeAt(0)	+	1);	}

//	previousChar	::	Char	->	Char

function	previousChar(c)	{

		return	String.fromCharCode(c.charCodeAt(0)-1);	}

//	higherColorHex	::	Char	->	Char

function	higherColorHex(c)	{return	c	>=	'f'	?	'f'	:

																																			c	==	'9'	?	'a'	:

																																			nextChar(c)}

//	lowerColorHex	::	Char	->	Char

function	lowerColorHex(c)	{	return	c	<=	'0'	?	'0'	:	



																																			c	==	'a'	?	'9'	:	

																																			previousChar(c);	}

//	raiseColorHexes	::	String	->	String

function	raiseColorHexes(arr)	{	return	arr.map(higherColorHex);	}

//	lowerColorHexes	::	String	->	String

function	lowerColorHexes(arr)	{	return	arr.map(lowerColorHex);	}

Now	let’s	compose	some	of	them	together.

var	lighterColor	=	arrayToString

		.compose(raiseColorHexes)

		.compose(stringToArray)

		var	darkerColor	=	arrayToString

		.compose(lowerColorHexes)

		.compose(stringToArray)

console.log(	lighterColor('af0189')	);	//	Returns:	'bf129a'

console.log(	darkerColor('af0189')		);		//	Returns:	'9e0078'

We	can	even	use	compose()	and	curry()	functions	together.	In	fact,	they	work	very	well
together.	Let’s	forge	together	the	curry	example	with	our	compose	example.	First	we’ll
need	our	helper	functions	from	before.

//	component2hex	::	Ints	->	Int

function	componentToHex(c)	{

		var	hex	=	c.toString(16);

		return	hex.length	==	1	?	"0"	+	hex	:	hex;

}

//	nums2hex	::	Ints*	->	Int

function	nums2hex()	{

		return	Array.prototype.map.call(arguments,	componentToHex).join('');

}

First	we	need	to	make	the	curried	and	partial-applied	functions,	then	we	can	compose
them	to	our	other	composed	functions.

var	lighterColors	=	lighterColor

		.compose(nums2hex.curry());

var	darkerRed	=	darkerColor

		.compose(nums2hex.partialApply(255));

Var	lighterRgb2hex	=	lighterColor

		.compose(nums2hex.partialApply());

console.log(	lighterColors(123,	0,	22)	);	//	Returns:	8cff11	

console.log(	darkerRed(123,	0)	);	//	Returns:	ee6a00	

console.log(	lighterRgb2hex(123,200,100)	);	//	Returns:	8cd975

There	we	have	it!	The	functions	read	really	well	and	make	a	lot	of	sense.	We	were	forced
to	begin	with	little	functions	that	just	did	one	thing.	Then	we	were	able	to	put	together
functions	with	more	utility.

Let’s	look	at	one	last	example.	Here’s	a	function	that	lightens	an	RBG	value	by	a	variable
amount.	Then	we	can	use	composition	to	create	new	functions	from	it.



//	lighterColorNumSteps	::	string	->	num	->	string

function	lighterColorNumSteps(color,	n)	{

		for	(var	i	=	0;	i	<	n;	i++)	{

				color	=	lighterColor(color);

		}

		return	color;

}

//	now	we	can	create	functions	like	this:

var	lighterRedNumSteps	=	lighterColorNumSteps.curry().compose(reds)(0,0);

//	and	use	them	like	this:

console.log(	lighterRedNumSteps(5)	);	//	Return:	'ff5555'

console.log(	lighterRedNumSteps(2)	);	//	Return:	'ff2222'

In	the	same	way,	we	could	easily	create	more	functions	for	creating	lighter	and	darker
blues,	greens,	grays,	purples,	anything	you	want.	This	is	a	really	great	way	to	construct	an
API.

We	just	barely	scratched	the	surface	of	what	function	composition	can	do.	What	compose
does	is	take	control	away	from	JavaScript.	Normally	JavaScript	will	evaluate	left	to	right,
but	now	the	interpreter	is	saying	“OK,	something	else	is	going	to	take	care	of	this,	I’ll	just
move	on	to	the	next.”	And	now	the	compose()	function	has	control	over	the	evaluation
sequence!

This	is	how	Lazy.js,	Bacon.js	and	others	have	been	able	to	implement	things	such	as
lazy	evaluation	and	infinite	sequences.	Up	next,	we’ll	look	into	how	those	libraries	are
used.





Mostly	functional	programming
What	is	a	program	without	side	effects?	A	program	that	does	nothing.

Complementing	our	code	with	functional	code	with	unavoidable	side-effects	can	be	called
“mostly	functional	programming.”	Using	multiple	paradigms	in	the	same	codebase	and
applying	them	where	they	are	most	optimal	is	the	best	approach.	Mostly	functional
programming	is	how	even	the	pure,	traditional	functional	programs	are	modelled:	keep
most	of	the	logic	in	pure	functions	and	interface	with	imperative	code.

And	this	is	how	we’re	going	to	write	a	little	application	of	our	own.

In	this	example,	we	have	a	boss	that	tells	us	that	we	need	a	web	application	for	our
company	that	tracks	the	status	of	the	employees’	availability.	All	the	employees	at	this
fictional	company	only	have	one	job:	using	our	website.	Staff	will	sign	in	when	they	get	to
work	and	sign	out	when	they	leave.	But	that’s	not	enough,	it	also	needs	to	automatically
update	the	content	as	it	changes,	so	our	boss	doesn’t	have	to	keep	refreshing	the	pages.

We’re	going	to	use	Lazy.js	as	our	functional	library.	And	we’re	also	going	to	be	lazy:
instead	of	worrying	about	handling	all	the	users	logging	in	and	out,	WebSockets,
databases,	and	more,	we’ll	just	pretend	there’s	a	generic	application	object	that	does	this
for	us	and	just	happens	to	have	the	perfect	API.

So	for	now,	let’s	just	get	the	ugly	parts	out	of	the	way,	the	parts	that	interface	and	create
side-effects.

function	Receptor(name,	available){

		this.name	=	name;

		this.available	=	available;	//	mutable	state

		this.render	=	function(){

				output	=	'<li>';

				output	+=	this.available	?	

						this.name	+	'	is	available'	:	

						this.name	+	'	is	not	available';

				output	+=	'</li>';

				return	output;

		}

}

var	me	=	new	Receptor;

var	receptors	=	app.getReceptors().push(me);

app.container.innerHTML	=	receptors.map(function(r){

		return	r.render();

}).join('');

This	would	be	sufficient	for	just	displaying	a	list	of	availabilities,	but	we	want	it	to	be
reactive,	which	brings	us	to	our	first	obstacle.

By	using	the	Lazy.js	library	to	store	the	objects	in	a	sequence,	which	won’t	actually
compute	anything	until	the	toArray()	method	is	called,	we	can	take	advantage	of	its
laziness	to	provide	a	sort	of	functional	reactive	programming.

var	lazyReceptors	=	Lazy(receptors).map(function(r){



		return	r.render();

});

app.container.innerHTML	=	lazyReceptors.toArray().join('');

Because	the	Receptor.render()	method	returns	new	HTML	instead	of	modifying	the
current	HTML,	all	we	have	to	do	is	set	the	innerHTML	parameter	to	its	output.

We’ll	also	have	to	trust	that	our	generic	application	for	user	management	will	provide
callback	methods	for	us	to	use.

app.onUserLogin	=	function(){

		this.available	=	true;

		app.container.innerHTML	=	lazyReceptors.toArray().join('');

};

app.onUserLogout	=	function(){

		this.available	=	false;

		app.container.innerHTML	=	lazyReceptors.toArray().join('');

};

This	way,	any	time	a	user	logs	in	or	out,	the	lazyReceptors	parameter	will	be	computed
again	and	the	availability	list	will	be	printed	with	the	most	recent	values.



Handling	events
But	what	if	the	application	doesn’t	provide	callbacks	for	when	the	user	logs	in	and	out?
Callbacks	are	messy	and	can	quickly	turn	a	program	into	spaghetti	code.	Instead,	we	can
determine	it	ourselves	by	observing	the	user	directly.	If	the	user	has	the	webpage	in	focus,
then	he/she	must	be	active	and	available.	We	can	use	JavaScript’s	focus	and	blur	events
for	this.

window.addEventListener('focus',	function(event)	{

		me.available	=	true;

		app.setReceptor(me.name,	me.available);	//	just	go	with	it

		container.innerHTML	=	lazyReceptors.toArray().join('');

});

window.addEventListener('blur',	function(event)	{

		me.available	=	false;

		app.setReceptor(me.name,	me.available);

		container.innerHTML	=	lazyReceptors.toArray().join('');

});

Wait	a	second,	aren’t	events	reactive	too?	Can	they	be	lazily	computed	as	well?	They	can
in	the	Lazy.js	library,	where	there’s	even	a	handy	method	for	this.

var	focusedReceptors	=	Lazy.events(window,	"focus").each(function(e){

		me.available	=	true;

		app.setReceptor(me.name,	me.available);

		container.innerHTML	=	lazyReceptors.toArray().join('');

});

var	blurredReceptors	=	Lazy.events(window,	"blur").each(function(e){

		me.available	=	false;

		app.setReceptor(me.name,	me.available);

		container.innerHTML	=	lazyReceptors.toArray().join('');

});

Easy	as	pie.

Note
By	using	the	Lazy.js	library	to	handle	events,	we	can	create	an	infinite	sequence	of
events.	Each	time	the	event	is	fired,	the	Lazy.each()	function	is	able	to	iterate	one	more
time.

Our	boss	likes	the	application	so	far,	but	she	points	out	that	if	an	employee	never	logs	out
before	leaving	for	the	day	without	closing	the	page,	then	the	application	says	the	employee
is	still	available.

To	figure	out	if	an	employee	is	active	on	the	website,	we	can	monitor	the	keyboard	and
mouse	events.	Let’s	say	they’re	considered	to	be	unavailable	after	30	minutes	of	no
activity.

var	timeout	=	null;

var	inputs	=	Lazy.events(window,	"mousemove").each(function(e){

		me.available	=	true;

		container.innerHTML	=	lazyReceptors.toArray().join('');

		clearTimeout(timeout);



		timeout	=	setTimeout(function(){

				me.available	=	false;

				container.innerHTML	=	lazyReceptors.toArray().join('');

		},	1800000);	//	30	minutes

});

The	Lazy.js	library	has	made	it	very	easy	for	us	to	handle	events	as	an	infinite	stream	that
we	can	map	over.	It	makes	this	possible	because	it	uses	function	composition	to	take
control	of	the	order	of	execution.

But	there’s	a	little	problem	with	all	of	this.	What	if	there	are	no	user	input	events	that	we
can	latch	onto?	What	if,	instead,	there	is	a	property	value	that	changes	all	the	time?	In	the
next	section,	we’ll	investigate	exactly	this	issue.





Functional	reactive	programming
Let’s	build	another	kind	of	application	that	works	in	much	the	same	way;	one	that	uses
functional	programming	to	react	to	changes	in	state.	But,	this	time,	the	application	won’t
be	able	to	rely	on	event	listeners.

Imagine	for	a	moment	that	you	work	for	a	news	media	company	and	your	boss	tells	you	to
create	a	web	application	that	tracks	government	election	results	on	Election	Day.	Data	is
continuously	flowing	in	as	local	precincts	turn	in	their	results,	so	the	results	to	display	on
the	page	are	very	reactive.	But	we	also	need	to	track	the	results	by	each	region,	so	there
will	be	multiple	objects	to	track.

Rather	than	creating	a	big	object-oriented	hierarchy	to	model	the	interface,	we	can
describe	it	declaratively	as	immutable	data.	We	can	transform	it	with	chains	of	pure	and
semi-pure	functions	whose	only	ultimate	side	effects	are	updating	whatever	bits	of	state
absolutely	must	be	held	onto	(ideally,	not	many).

And	we’ll	use	the	Bacon.js	library,	which	will	allow	us	to	quickly	develop	Functional
Reactive	Programming	(FRP)	applications.	The	application	will	only	be	used	one	day
out	of	the	year	(Election	Day),	and	our	boss	thinks	it	should	take	a	proportional	amount	of
time.	With	functional	programming	and	a	library	such	as	Bacon.js,	we’ll	get	it	done	in
half	the	time.

But	first,	we’re	going	to	need	some	objects	to	represent	the	voting	regions,	such	as	states,
provinces,	districts,	and	so	on.

function	Region(name,	percent,	parties){

		//	mutable	properties:

		this.name	=	name;

		this.percent	=	percent;	//	%	of	precincts	reported

		this.parties	=	parties;	//	political	parties

		//	return	an	HTML	representation

		this.render	=	function(){

				var	lis	=	this.parties.map(function(p){

						return	'<li>'	+	p.name	+	':	'	+	p.votes	+	'</li>';

				});

				var	output	=	'<h2>'	+	this.name	+	'</h2>';

				output	+=	'<ul>'	+	lis.join('')	+	'</ul>';	

				output	+=	'Percent	reported:	'	+	this.percent;	

				return	output;

		}

}

function	getRegions(data)	{

		return	JSON.parse(data).map(function(obj){

				return	new	Region(obj.name,	obj.percent,	obj.parties);

		});

}

var	url	=	'http://api.server.com/election-data?format=json';

var	data	=	jQuery.ajax(url);

var	regions	=	getRegions(data);

app.container.innerHTML	=	regions.map(function(r){



		return	r.render();

}).join('');

While	the	above	would	be	sufficient	for	just	displaying	a	static	list	of	election	results,	we
need	a	way	to	update	the	regions	dynamically.	It’s	time	to	cook	up	some	Bacon	and	FRP.



Reactivity
Bacon	has	a	function,	Bacon.fromPoll(),	that	lets	us	create	an	event	stream,	where	the
event	is	just	a	function	that	is	called	on	the	given	interval.	And	the	stream.subscribe()
function	lets	us	subscribe	a	handler	function	to	the	stream.	Because	it’s	lazy,	the	stream
will	not	actually	do	anything	without	a	subscriber.

var	eventStream	=	Bacon.fromPoll(10000,	function(){

		return	Bacon.Next;

});

var	subscriber	=	eventStream.subscribe(function(){

		var	url	=	'http://api.server.com/election-data?format=json';

		var	data	=	jQuery.ajax(url);

		var	newRegions	=	getRegions(data);	

		container.innerHTML	=	newRegions.map(function(r){

				return	r.render();

		}).join('');

});

By	essentially	putting	it	in	a	loop	that	runs	every	10	seconds,	we	could	get	the	job	done.
But	this	method	would	hammer-ping	the	network	and	is	incredibly	inefficient.	That	would
not	be	very	functional.	Instead,	let’s	dig	a	little	deeper	into	the	Bacon.js	library.

In	Bacon,	there	are	EventStreams	and	Properties	parameters.	Properties	can	be	thought	of
as	“magic”	variables	that	change	over	time	in	response	to	events.	They’re	not	really	magic
because	they	still	rely	on	a	stream	of	events.	The	Property	changes	over	time	in	relation	to
its	EventStream.

The	Bacon.js	library	has	another	trick	up	its	sleeve.	The	Bacon.fromPromise()	function
is	a	way	to	emit	events	into	a	stream	by	using	promises.	And	as	of	jQuery	version	1.5.0,
jQuery	AJAX	implements	the	promises	interface.	So	all	we	need	to	do	is	write	an	AJAX
search	function	that	emits	events	when	the	asynchronous	call	is	complete.	Every	time	the
promise	is	resolved,	it	calls	the	EvenStream’s	subscribers.

var	url	=	'http://api.server.com/election-data?format=json';

var	eventStream	=	Bacon.fromPromise(jQuery.ajax(url));

var	subscriber	=	eventStream.onValue(function(data){

		newRegions	=	getRegions(data);

		container.innerHTML	=	newRegions.map(function(r){

				return	r.render();

		}).join('');

}

A	promise	can	be	thought	of	as	an	eventual	value;	with	the	Bacon.js	library,	we	can	lazily
wait	on	the	eventual	values.



Putting	it	all	together
Now	that	we	have	the	reactivity	covered,	we	can	finally	play	with	some	code.

We	can	modify	the	subscriber	with	chains	of	pure	functions	to	do	things	such	as	adding	up
a	total	and	filtering	out	unwanted	results,	and	we	do	it	all	within	onclick()	handler
functions	for	buttons	that	we	create.

//	create	the	eventStream	out	side	of	the	functions

var	eventStream	=	Bacon.onPromise(jQuery.ajax(url));

var	subscribe	=	null;

var	url	=	'http://api.server.com/election-data?format=json';

//	our	un-modified	subscriber

$('button#showAll').click(function()	{

		var	subscriber	=	eventStream.onValue(function(data)	{

				var	newRegions	=	getRegions(data).map(function(r)	{

						return	new	Region(r.name,	r.percent,	r.parties);

				});

				container.innerHTML	=	newRegions.map(function(r)	{

						return	r.render();

				}).join('');

		});

});

//	a	button	for	showing	the	total	votes

$('button#showTotal').click(function()	{

		var	subscriber	=	eventStream.onValue(function(data)	{

				var	emptyRegion	=	new	Region('empty',	0,	[{

						name:	'Republican',	votes:	0

				},	{

						name:	'Democrat',	votes:	0

				}]);

				var	totalRegions	=	getRegions(data).reduce(function(r1,	r2)	{

						newParties	=	r1.parties.map(function(x,	i)	{

						return	{

								name:	r1.parties[i].name,

								votes:	r1.parties[i].votes	+	r2.parties[i].votes

						};

				});

				newRegion	=	new	Region('Total',	(r1.percent	+	r2.percent)	/	2,	

newParties);

				return	newRegion;

				},	emptyRegion);

				container.innerHTML	=	totalRegions.render();

		});

});

//	a	button	for	only	displaying	regions	that	are	reporting	>	50%

$('button#showMostlyReported').click(function()	{

		var	subscriber	=	eventStream.onValue(function(data)	{

				var	newRegions	=	getRegions(data).map(function(r)	{

						if	(r.percent	>	50)	return	r;

						else	return	null;

				}).filter(function(r)	{return	r	!=	null;});



				container.innerHTML	=	newRegions.map(function(r)	{

						return	r.render();

				}).join('');

		});

});

The	beauty	of	this	is	that,	when	users	click	between	the	buttons,	the	event	stream	doesn’t
change	but	the	subscriber	does,	which	makes	it	all	work	smoothly.





Summary
JavaScript	is	a	beautiful	language.

Its	inner	beauty	really	shines	with	functional	programming.	It’s	what	empowers	its
excellent	extendibility.	Just	the	fact	that	it	allows	first-class	functions	that	can	do	so	many
things	is	what	opens	the	functional	flood	gates.	Concepts	build	on	top	of	each	other,
stacking	up	higher	and	higher.

In	this	chapter,	we	dove	head-first	into	the	functional	paradigm	in	JavaScript.	We	covered
function	factories,	currying,	function	composition	and	everything	required	to	make	it
work.	We	built	an	extremely	modular	application	that	used	these	concepts.	And	then	we
showed	how	to	use	some	functional	libraries	that	use	these	same	concepts	themselves,
namely	function	composition,	to	manipulate	the	order	of	execution.

Throughout	the	chapter,	we	covered	several	styles	of	functional	programming:	data
generic	programming,	mostly-functional	programming,	and	functional	reactive
programming.	They’re	all	not	that	different	from	each	other,	they’re	just	different	patterns
for	applying	functional	programing	in	different	situations.

In	the	previous	chapter,	something	called	Category	Theory	was	briefly	mentioned.	In	the
next	chapter,	we’re	going	to	learn	a	lot	more	about	what	it	is	and	how	to	use	it.





Chapter	5.	Category	Theory
Thomas	Watson	was	famously	quoted	as	saying,	“I	think	there	is	a	world	market	for
maybe	five	computers”.	That	was	in	1948.	Back	then,	everybody	knew	that	computers
would	only	be	used	for	two	things:	math	and	engineering.	Not	even	the	biggest	minds	in
tech	could	predict	that,	one	day,	computers	would	be	able	to	translate	Spanish	to	English,
or	simulate	entire	weather	systems.	At	the	time,	the	fastest	machine	was	IBM’s	SSEC,
clocking	in	at	50	multiplications	per	second,	the	display	terminal	wasn’t	due	until	15	years
later	and	multiple-processing	meant	multiple	user	terminals	sharing	a	single	processor.
The	transistor	changed	everything,	but	tech’s	visionaries	still	missed	the	mark.	Ken	Olson
made	another	famously	foolish	prediction	when,	in	1977,	he	said	“There	is	no	reason
anyone	would	want	a	computer	in	their	home”.

It	seams	obvious	to	us	now	that	computers	are	not	just	for	scientists	and	engineers,	but
that’s	hindsight.	The	idea	that	machines	can	do	more	than	just	math	was	anything	but
intuitive	70	years	ago.	Watson	didn’t	just	fail	to	realize	how	computers	could	transform	a
society,	he	failed	to	realize	the	transformative	and	evolving	powers	of	mathematics.

But	the	potential	of	computers	and	math	was	not	lost	on	everybody.	John	McCarthy
invented	Lisp	in	1958,	a	revolutionary	algorithm-based	language	that	ushered	in	a	new	era
in	computing.	Since	its	inception,	Lisp	was	instrumental	in	the	idea	of	using	abstraction
layers—compilers,	interpreters,	virtualization—to	push	forward	the	progression	of
computers	from	hardcore	math	machines	to	what	they	are	today.

From	Lisp	came	Scheme,	a	direct	ancestor	of	JavaScript.	Now	that	brings	us	full	circle.	If
computers	are,	at	their	core,	machines	that	just	do	math,	then	it	stands	to	reason	that	a
math-based	programming	paradigm	would	excel.

The	term	“math”	is	being	used	here	not	to	describe	the	“number	crunching”	that
computers	can	obviously	do,	but	to	describe	discrete	mathematics:	the	study	of	discrete,
mathematical	structures	such	as	statements	in	logic	or	the	instructions	of	a	computer
language.	By	treating	code	as	a	discrete	mathematical	structure,	we	can	apply	concepts
and	ideas	in	math	to	it.	This	is	what	has	made	functional	programming	so	instrumental	in
artificial	intelligence,	graph	search,	pattern	recognition	and	other	big	challenges	in
computer	science.

In	this	chapter,	we	will	experiment	with	some	of	these	concepts	and	their	applications	in
everyday	programming	challenges.	They	will	include:

Category	theory
Morphisms
Functors
Maybes
Promises
Lenses
Function	composition

With	these	concepts,	we’ll	be	able	to	write	entire	libraries	and	APIs	very	easily	and	safely.



And	we’ll	go	from	explaining	category	theory	to	formally	implementing	it	in	JavaScript.



Category	theory
Category	theory	is	the	theoretical	concept	that	empowers	function	composition.	Category
theory	and	function	composition	go	together	like	engine	displacement	and	horsepower,
like	NASA	and	the	space	shuttle,	like	good	beer	and	a	mug	to	pour	it	in.	Basically,	you
can’t	have	one	without	the	other.



Category	theory	in	a	nutshell
Category	theory	really	isn’t	too	difficult	a	concept.	Its	place	in	math	is	large	enough	to	fill
up	an	entire	graduate-level	college	course,	but	its	place	in	computer	programming	can	be
summed	up	quite	easily.

Einstein	once	said,	“If	you	can’t	explain	it	to	a	6-year-old,	you	don’t	know	it	yourself”.
Thus,	in	the	spirit	of	explaining	it	to	a	6-year-old,	category	theory	is	just	connecting	the
dots.	Although	it	may	be	grossly	over-simplifying	category	theory,	it	does	do	a	good	job
of	explaining	what	we	need	to	know	in	a	straightforward	manner.

First	you’ll	need	to	know	some	terminology.	Categories	are	just	sets	with	the	same	type.
In	JavaScript,	they’re	arrays	or	objects	that	contain	variables	that	are	explicitly	declared	as
numbers,	strings,	Booleans,	dates,	nodes,	and	so	on.	Morphisms	are	pure	functions	that,
when	given	a	specific	set	of	inputs,	always	return	the	same	output.	Homomorphic
operations	are	restricted	to	a	single	category,	while	polymorphic	operations	can	operate
on	multiple	categories.	For	example,	the	homomorphic	function	multiplication	only	works
on	numbers,	but	the	polymorphic	function	addition	can	work	on	strings	too.

The	following	diagram	shows	three	categories—A,	B,	and	C—and	two	morphisms—ƒ	and
ɡ.

Category	theory	tells	us	that,	when	we	have	two	morphisms	where	the	category	of	the	first
one	is	the	expected	input	of	the	other,	then	they	can	be	composed	to	the	following:



The	ƒ	o	g	symbol	is	the	composition	of	morphisms	ƒ	and	g.	Now	we	can	just	connect	the
dots.

And	that’s	all	it	really	is,	just	connecting	dots.



Type	safety
Let’s	connect	some	dots.	Categories	contain	two	things:

1.	 Objects	(in	JavaScript,	types).
2.	 Morphisms	(in	JavaScript,	pure	functions	that	only	work	on	types).

These	are	the	terms	given	to	category	theory	by	mathematicians,	so	there	is	some
unfortunate	nomenclature	overloading	with	our	JavaScript	terminology.	Objects	in
category	theory	are	more	like	variables	with	an	explicit	data	type	and	not	collections	of
properties	and	values	like	in	the	JavaScript	definition	of	objects.	Morphisms	are	just	pure
functions	that	use	those	types.

So	applying	the	idea	of	category	theory	to	JavaScript	is	pretty	easy.	Using	category	theory
in	JavaScript	means	working	with	one	certain	data	type	per	category.	Data	types	are
numbers,	strings,	arrays,	dates,	objects,	Booleans,	and	so	on.	But,	with	no	strict	type
system	in	JavaScript,	things	can	go	awry.	So	we’ll	have	to	implement	our	own	method	of
ensuring	that	the	data	is	correct.

There	are	four	primitive	data	types	in	JavaScript:	numbers,	strings,	Booleans,	and
functions.	We	can	create	type	safety	functions	that	either	return	the	variable	or	throw	an
error.	This	fulfils	the	object	axiom	of	categories.

var	str	=	function(s)	{

		if	(typeof	s	===	"string")	{

				return	s;

		}

		else	{

				throw	new	TypeError("Error:	String	expected,	"	+	typeof	s	+	"	given.");				

		}

}

var	num	=	function(n)	{

		if	(typeof	n	===	"number")	{

				return	n;

		}

		else	{

				throw	new	TypeError("Error:	Number	expected,	"	+	typeof	n	+	"	given.");				

		}

}

var	bool	=	function(b)	{

		if	(typeof	b	===	"boolean")	{

				return	b;

		}

		else	{

				throw	new	TypeError("Error:	Boolean	expected,	"	+	typeof	b	+	"	

given.");			

		}

}

var	func	=	function(f)	{

		if	(typeof	f	===	"function")	{

				return	f;

		}



		else	{

				throw	new	TypeError("Error:	Function	expected,	"	+	typeof	f	+	"	

given.");			

		}

}

However,	there’s	a	lot	of	repeated	code	here	and	that	isn’t	very	functional.	Instead,	we	can
create	a	function	that	returns	another	function	that	is	the	type	safety	function.

var	typeOf	=	function(type)	{

		return	function(x)	{

				if	(typeof	x	===	type)	{

						return	x;

				}

				else	{

						throw	new	TypeError("Error:	"+type+"	expected,	"+typeof	x+"	given.");

				}

		}

}

var	str	=	typeOf('string'),

		num	=	typeOf('number'),

		func	=	typeOf('function'),

		bool	=	typeOf('boolean');

Now,	we	can	use	them	to	ensure	that	our	functions	behave	as	expected.

//	unprotected	method:

var	x	=	'24';

x	+	1;	//	will	return	'241',	not	25

//	protected	method

//	plusplus	::	Int	->	Int

function	plusplus(n)	{

		return	num(n)	+	1;

}

plusplus(x);	//	throws	error,	preferred	over	unexpected	output

Let’s	look	at	a	meatier	example.	If	we	want	to	check	the	length	of	a	Unix	timestamp	that	is
returned	by	the	JavaScript	function	Date.parse(),	not	as	a	string	but	as	a	number,	then
we’ll	have	to	use	our	str()	function.

//	timestampLength	::	String	->	Int

function	timestampLength(t)	{	return	num(str(t).length);	}

timestampLength(Date.parse('12/31/1999'));	//	throws	error

timestampLength(Date.parse('12/31/1999')

		.toString());	//	returns	12

Functions	like	this	that	explicitly	transform	one	type	to	another	(or	to	the	same	type)	are
called	morphisms.	This	fulfils	the	morphism	axiom	of	category	theory.	These	forced	type
declarations	via	the	type	safety	functions	and	the	morphisms	that	use	them	are	everything
we	need	to	represent	the	notion	of	a	category	in	JavaScript.

Object	identities
There’s	one	other	important	data	type:	objects.



var	obj	=	typeOf('object');

obj(123);	//	throws	error

obj({x:'a'});	//	returns	{x:'a'}

However,	objects	are	different.	They	can	be	inherited.	Everything	that	is	not	a	primitive—
numbers,	strings,	Booleans,	and	functions—is	an	object,	including	arrays,	dates,	elements,
and	more.

There’s	no	way	to	know	what	type	of	object	something	is,	as	in	to	know	what	sub-type	a
JavaScript	‘object’	is,	from	the	typeof	keyword,	so	we’ll	have	to	improvise.	Objects	have
a	toString()	function	that	we	can	hijack	for	this	purpose.

var	obj	=	function(o)	{

		if	(Object.prototype.toString.call(o)==="[object	Object]")	{

				return	o;

		}

		else	{

				throw	new	TypeError("Error:	Object	expected,	something	else	given.");	

		}

}

Again,	with	all	the	objects	out	there,	we	should	implement	some	code	re-use.

var	objectTypeOf	=	function(name)	{

		return	function(o)	{

				if	(Object.prototype.toString.call(o)	===	"[object	"+name+"]")	{

						return	o;

				}

				else	{

						throw	new	TypeError("Error:	'+name+'	expected,	something	else	

given.");

				}

		}

}

var	obj	=	objectTypeOf('Object');

var	arr	=	objectTypeOf('Array');

var	date	=	objectTypeOf('Date');

var	div	=	objectTypeOf('HTMLDivElement');

These	will	be	very	useful	for	our	next	topic:	functors.





Functors
While	morphisms	are	mappings	between	types,	functors	are	mappings	between	categories.
They	can	be	thought	of	as	functions	that	lift	values	out	of	a	container,	morph	them,	and
then	put	them	into	a	new	container.	The	first	input	is	a	morphism	for	the	type	and	the
second	input	is	the	container.

Note
The	type	signature	for	functors	looks	like	this:

//	myFunctor	::	(a	->	b)	->	f	a	->	f	b

This	says,	“give	me	a	function	that	takes	a	and	returns	b	and	a	box	that	contains	a(s),	and
I’ll	return	a	box	that	contains	b(s).



Creating	functors
It	turns	out	we	already	have	one	functor:	map().	It	grabs	the	values	within	the	container,	an
array,	and	applies	a	function	to	it.

[1,	4,	9].map(Math.sqrt);	//	Returns:	[1,	2,	3]

However,	we’ll	need	to	write	it	as	a	global	function	and	not	as	a	method	of	the	array
object.	This	will	allow	us	to	write	cleaner,	safer	code	later	on.

//	map	::	(a	->	b)	->	[a]	->	[b]

var	map	=	function(f,	a)	{

		return	arr(a).map(func(f));

}

This	example	seems	like	a	contrived	wrapper	because	we’re	just	piggybacking	onto	the
map()	function.	But	it	serves	a	purpose.	It	provides	a	template	for	maps	of	other	types.

//	strmap	::	(str	->	str)	->	str	->	str

var	strmap	=	function(f,	s)	{

		return	str(s).split('').map(func(f)).join('');

}

//	MyObject#map	::	(myValue	->	a)	->	a

MyObject.prototype.map(f{

		return	func(f)(this.myValue);

}



Arrays	and	functors
Arrays	are	the	preferred	way	to	work	with	data	in	functional	JavaScript.

Is	there	an	easier	way	to	create	functors	that	are	already	assigned	to	a	morphism?	Yes,	and
it’s	called	arrayOf.	When	you	pass	in	a	morphism	that	expects	an	integer	and	returns	an
array,	you	get	back	a	morphism	that	expects	an	array	of	integers	and	returns	an	array	of
arrays.

It	is	not	a	functor	itself,	but	it	allows	us	to	create	functors	from	morphisms.

//	arrayOf	::	(a	->	b)	->	([a]	->	[b])

var	arrayOf	=	function(f)	{

		return	function(a)	{

				return	map(func(f),	arr(a));

		}

}

Here’s	how	to	create	functors	by	using	morphism:

var	plusplusall	=	arrayOf(plusplus);	//	plusplus	is	our	morphism

console.log(	plusplusall([1,2,3])	);	//	returns	[2,3,4]

console.log(	plusplusall([1,'2',3])	);	//	error	is	thrown

The	interesting	property	of	the	arrayOf	functor	is	that	it	works	on	type	safeties	as	well.
When	you	pass	in	the	type	safety	function	for	strings,	you	get	back	a	type	safety	function
for	an	array	of	strings.	The	type	safeties	are	treated	like	the	identity	function	morphism.
This	can	be	very	useful	for	ensuring	that	an	array	contains	all	the	correct	types.

var	strs	=	arrayOf(str);

console.log(	strs(['a','b','c'])	);	//	returns	['a','b','c']

console.log(	strs(['a',2,'c'])	);	//	throws	error



Function	compositions,	revisited
Functions	are	another	type	of	primitive	that	we	can	create	a	functor	for.	And	that	functor	is
called	fcompose.	We	defined	functors	as	something	that	takes	a	value	from	a	container	and
applies	a	function	to	it.	When	that	container	is	a	function,	we	just	call	it	to	get	its	inner
value.

We	already	know	what	function	compositions	are,	but	let’s	look	at	what	they	can	do	in	a
category	theory-driven	environment.

Function	compositions	are	associative.	If	your	high	school	algebra	teacher	was	like	mine,
she	taught	you	what	the	property	is	but	not	what	it	can	do.	In	practice,	compose	is	what
the	associative	property	can	do.

We	can	do	any	inner-compose,	it	doesn’t	matter	how	it’s	grouped.	This	is	not	to	be
confused	with	the	commutative	property.	ƒ	o	g	does	not	always	equal	g	o	ƒ.	In	other
words,	the	reverse	of	the	first	word	of	a	string	is	not	the	same	as	the	first	word	of	the
reverse	of	a	string.

What	this	all	means	is	that	it	doesn’t	matter	which	functions	are	applied	and	in	what	order,
as	long	as	the	input	of	each	functions	comes	from	the	output	of	the	previous	function.	But
wait,	if	the	function	on	the	right	relies	on	the	function	on	the	left,	then	can’t	there	be	only
one	order	of	evaluation?	Left	to	right?	True,	but	if	it’s	encapsulated,	then	we	can	control	it
however	we	feel	fit.	This	is	what	empowered	lazy	evaluation	in	JavaScript.

Let’s	rewrite	function	composition,	not	as	an	extension	of	the	function	prototype,	but	as	a
stand-alone	function	that	will	allow	us	to	get	more	out	of	it.	The	basic	form	is	as	follows:

var	fcompose	=	function(f,	g)	{



		return	function()	{

				return	f.call(this,	g.apply(this,	arguments));

		};

};

But	we’ll	need	it	to	work	on	any	number	of	inputs.

var	fcompose	=	function()	{

		//	first	make	sure	all	arguments	are	functions

		var	funcs	=	arrayOf(func)(arguments);

		//	return	a	function	that	applies	all	the	functions

		return	function()	{

				var	argsOfFuncs	=	arguments;

				for	(var	i	=	funcs.length;	i	>	0;	i	-=	1)	{

						argsOfFuncs		=	[funcs[i].apply(this,	args)];

				}

				return	args[0];

		};

};

//	example:

var	f	=	fcompose(negate,	square,	mult2,	add1);

f(2);	//	Returns:	-36

Now	that	we’ve	encapsulated	the	functions,	we	have	control	over	them.	We	could	rewrite
the	compose	function	such	that	each	function	accepts	another	function	as	input,	stores	it,
and	gives	back	an	object	that	does	the	same.	Instead	of	accepting	an	array	as	an	input,
doing	something	with	it,	and	then	giving	back	a	new	array	for	each	operation,	we	can
accept	a	single	array	for	each	element	in	the	source,	perform	all	operations	combined
(every	map(),	filter(),	and	so	on,	composed	together),	and	finally	store	the	results	in	a
new	array.	This	is	lazy	evaluation	via	function	composition.	No	reason	to	reinvent	the
wheel	here.	Many	libraries	have	a	nice	implementation	of	this	concept,	including	the
Lazy.js,	Bacon.js	and	wu.js	libraries.

There’s	a	lot	more	we	can	do	as	a	result	of	this	different	model:	asynchronous	iteration,
asynchronous	event	handling,	lazy	evaluation,	and	even	automatic	parallelization.

Note
Automatic	parallelization?	There’s	a	word	for	that	in	the	computer	science	industry:
IMPOSSIBLE.	But	is	it	really	impossible?	The	next	evolutionary	leap	in	Moore’s	law
might	be	a	compiler	that	parallelizes	our	code	for	us,	and	could	function	composition	be
it?

No,	it	doesn’t	quite	work	that	way.	The	JavaScript	engine	is	what	is	really	doing	the
parallelization,	not	automatically	but	with	well	thought-out	code.	Compose	just	gives	the
engine	the	chance	to	split	it	into	parallel	processes.	But	that	in	itself	is	pretty	cool.





Monads
Monads	are	tools	that	help	you	compose	functions.

Like	primitive	types,	monads	are	structures	that	can	be	used	as	the	containers	that	functors
“reach	into”.	The	functors	grab	the	data,	do	something	to	it,	put	it	into	a	new	monad,	and
return	it.

There	are	three	monads	we’ll	focus	on:

Maybes
Promises
Lenses

So	in	addition	to	arrays	(map)	and	functions	(compose),	we’ll	have	five	functors	(map,
compose,	maybe,	promise	and	lens).	These	are	just	some	of	the	many	other	functors	and
monads	that	are	out	there.



Maybes
Maybes	allow	us	to	gracefully	work	with	data	that	might	be	null	and	to	have	defaults.	A
maybe	is	a	variable	that	either	has	some	value	or	it	doesn’t.	And	it	doesn’t	matter	to	the
caller.

On	its	own,	it	might	seem	like	this	is	not	that	big	a	deal.	Everybody	knows	that	null-
checks	are	easily	accomplished	with	an	if-else	statement:

if	(getUsername()	==	null	)	{

		username	=	'Anonymous')	{

else	{

		username	=	getUsername();

}

But	with	functional	programming,	we’re	breaking	away	from	the	procedural,	line-by-line
way	of	doing	things	and	instead	working	with	pipelines	of	functions	and	data.	If	we	had	to
break	the	chain	in	the	middle	just	to	check	if	the	value	existed	or	not,	we	would	have	to
create	temporary	variables	and	write	more	code.	Maybes	are	just	tools	to	help	us	keep	the
logic	flowing	through	the	pipeline.

To	implement	maybes,	we’ll	first	need	to	create	some	constructors.

//	the	Maybe	monad	constructor,	empty	for	now

var	Maybe	=	function(){};	

//	the	None	instance,	a	wrapper	for	an	object	with	no	value

var	None	=	function(){};	

None.prototype	=	Object.create(Maybe.prototype);

None.prototype.toString	=	function(){return	'None';};

//	now	we	can	write	the	`none`	function

//	saves	us	from	having	to	write	`new	None()`	all	the	time

var	none	=	function(){return	new	None()};

//	and	the	Just	instance,	a	wrapper	for	an	object	with	a	value

var	Just	=	function(x){return	this.x	=	x;};

Just.prototype	=	Object.create(Maybe.prototype);

Just.prototype.toString	=	function(){return	"Just	"+this.x;};

var	just	=	function(x)	{return	new	Just(x)};

Finally,	we	can	write	the	maybe	function.	It	returns	a	new	function	that	either	returns
nothing	or	a	maybe.	It	is	a	functor.

var	maybe	=	function(m){

		if	(m	instanceof	None)	{

				return	m;

		}

		else	if	(m	instanceof	Just)	{

				return	just(m.x);			

		}

		else	{

				throw	new	TypeError("Error:	Just	or	None	expected,	"	+	m.toString()	+	"	

given.");	



		}

}

And	we	can	also	create	a	functor	generator	just	like	we	did	with	arrays.

var	maybeOf	=	function(f){

		return	function(m)	{

				if	(m	instanceof	None)	{

						return	m;

				}

				else	if	(m	instanceof	Just)	{

						return	just(f(m.x));

				}

				else	{

						throw	new	TypeError("Error:	Just	or	None	expected,	"	+	m.toString()	+	

"	given.");	

				}

		}

}

So	Maybe	is	a	monad,	maybe	is	a	functor,	and	maybeOf	returns	a	functor	that	is	already
assigned	to	a	morphism.

We’ll	need	one	more	thing	before	we	can	move	forward.	We’ll	need	to	add	a	method	to
the	Maybe	monad	object	that	helps	us	use	it	more	intuitively.

Maybe.prototype.orElse	=	function(y)	{

		if	(this	instanceof	Just)	{

				return	this.x;

		}

		else	{

				return	y;

		}

}

In	its	raw	form,	maybes	can	be	used	directly.

maybe(just(123)).x;	//	Returns	123

maybeOf(plusplus)(just(123)).x;	//	Returns	124

maybe(plusplus)(none()).orElse('none');	//	returns	'none'

Anything	that	returns	a	method	that	is	then	executed	is	complicated	enough	to	be	begging
for	trouble.	So	we	can	make	it	a	little	cleaner	by	calling	on	our	curry()	function.

maybePlusPlus	=	maybeOf.curry()(plusplus);

maybePlusPlus(just(123)).x;	//	returns	123

maybePlusPlus(none()).orElse('none');	//	returns	none

But	the	real	power	of	maybes	will	become	clear	when	the	dirty	business	of	directly	calling
the	none()	and	just()	functions	is	abstracted.	We’ll	do	this	with	an	example	object	User,
that	uses	maybes	for	the	username.

var	User	=	function(){

		this.username	=	none();	//	initially	set	to	`none`

};

User.prototype.setUsername	=	function(name)	{

		this.username	=	just(str(name));	//	it's	now	a	`just



};

User.prototype.getUsernameMaybe	=	function()	{

		var	usernameMaybe	=	maybeOf.curry()(str);

		return	usernameMaybe(this.username).orElse('anonymous');

};

var	user	=	new	User();

user.getUsernameMaybe();	//	Returns	'anonymous'

user.setUsername('Laura');

user.getUsernameMaybe();	//	Returns	'Laura'

And	now	we	have	a	powerful	and	safe	way	to	define	defaults.	Keep	this	User	object	in
mind	because	we’ll	be	using	it	later	on	in	this	chapter.



Promises
The	nature	of	promises	is	that	they	remain	immune	to	changing	circumstances.

-	Frank	Underwood,	House	of	Cards

In	functional	programming,	we’re	often	working	with	pipelines	and	data	flows:	chains	of
functions	where	each	function	produces	a	data	type	that	is	consumed	by	the	next.
However,	many	of	these	functions	are	asynchronous:	readFile,	events,	AJAX,	and	so	on.
Instead	of	using	a	continuation-passing	style	and	deeply	nested	callbacks,	how	can	we
modify	the	return	types	of	these	functions	to	indicate	the	result?	By	wrapping	them	in
promises.

Promises	are	like	the	functional	equivalent	of	callbacks.	Obviously,	callbacks	are	not	all
that	functional	because,	if	more	than	one	function	is	mutating	the	same	data,	then	there
can	be	race	conditions	and	bugs.	Promises	solve	that	problem.

You	should	use	promises	to	turn	this:

fs.readFile("file.json",	function(err,	val)	{

		if(	err	)	{

				console.error("unable	to	read	file");

		}

		else	{

				try	{

						val	=	JSON.parse(val);

						console.log(val.success);

				}

				catch(	e	)	{

						console.error("invalid	json	in	file");

				}

		}

});

Into	the	following	code	snippet:

fs.readFileAsync("file.json").then(JSON.parse)

		.then(function(val)	{

				console.log(val.success);

		})

		.catch(SyntaxError,	function(e)	{

				console.error("invalid	json	in	file");

		})

		.catch(function(e){

				console.error("unable	to	read	file")

		});

The	preceding	code	is	from	the	README	for	bluebird:	a	full	featured	Promises/A+
implementation	with	exceptionally	good	performance.	Promises/A+	is	a	specification	for
implementing	promises	in	JavaScript.	Given	its	current	debate	within	the	JavaScript
community,	we’ll	leave	the	implementations	up	to	the	Promises/A+	team,	as	it	is	much
more	complex	than	maybes.



But	here’s	a	partial	implementation:

//	the	Promise	monad

var	Promise	=	require('bluebird');

//	the	promise	functor

var	promise	=	function(fn,	receiver)	{

		return	function()	{

				var	slice	=	Array.prototype.slice,

				args	=	slice.call(arguments,	0,	fn.length	-	1),

				promise	=	new	Promise();

				args.push(function()	{

						var	results	=	slice.call(arguments),

						error	=	results.shift();

						if	(error)	promise.reject(error);

						else	promise.resolve.apply(promise,	results);

				});

				fn.apply(receiver,	args);

				return	promise;

		};

};

Now	we	can	use	the	promise()	functor	to	transform	functions	that	take	callbacks	into
functions	that	return	promises.

var	files	=	['a.json',	'b.json',	'c.json'];

readFileAsync	=	promise(fs.readFile);

var	data	=	files

		.map(function(f){

				readFileAsync(f).then(JSON.parse)

		})

		.reduce(function(a,b){

				return	$.extend({},	a,	b)

		});



Lenses
Another	reason	why	programmers	really	like	monads	is	that	they	make	writing	libraries
very	easy.	To	explore	this,	let’s	extend	our	User	object	with	more	functions	for	getting	and
setting	values	but,	instead	of	using	getters	and	setters,	we’ll	use	lenses.

Lenses	are	first-class	getters	and	setters.	They	allow	us	to	not	just	get	and	set	variables,
but	also	to	run	functions	over	it.	But	instead	of	mutating	the	data,	they	clone	and	return	the
new	data	modified	by	the	function.	They	force	data	to	be	immutable,	which	is	great	for
security	and	consistency	as	well	for	libraries.	They’re	great	for	elegant	code	no	matter
what	the	application,	so	long	as	the	performance-hit	of	introducing	additional	array	copies
is	not	a	critical	issue.

Before	we	write	the	lens()	function,	let’s	look	at	how	it	works.

var	first	=	lens(

		function	(a)	{	return	arr(a)[0];	},	//	get

		function	(a,	b)	{	return	[b].concat(arr(a).slice(1));	}	//	set

);

first([1,	2,	3]);	//	outputs	1

first.set([1,	2,	3],	5);	//	outputs	[5,	2,	3]

function	tenTimes(x)	{	return	x	*	10	}

first.modify(tenTimes,	[1,2,3]);	//	outputs	[10,2,3]

And	here’s	how	the	lens()	function	works.	It	returns	a	function	with	get,	set	and	mod
defined.	The	lens()	function	itself	is	a	functor.

var	lens	=	fuction(get,	set)	{

		var	f	=	function	(a)	{return	get(a)};

		f.get	=	function	(a)	{return	get(a)};	

		f.set	=	set;

		f.mod	=	function	(f,	a)	{return	set(a,	f(get(a)))};

		return	f;

};

Let’s	try	an	example.	We’ll	extend	our	User	object	from	the	previous	example.

//	userName	::	User	->	str

var	userName	=	lens(

		function	(u)	{return	u.getUsernameMaybe()},	//	get

		function	(u,	v)	{	//	set

				u.setUsername(v);		

				return	u.getUsernameMaybe();	

		}

);

var	bob	=	new	User();

bob.setUsername('Bob');

userName.get(bob);	//	returns	'Bob'

userName.set(bob,	'Bobby');	//return	'Bobby'

userName.get(bob);	//	returns	'Bobby'

userName.mod(strToUpper,	bob);	//	returns	'BOBBY'

strToUpper.compose(userName.set)(bob,	'robert');	//	returns	'ROBERT'

userName.get(bob);	//	returns	'robert'



jQuery	is	a	monad
If	you	think	all	this	abstract	babble	about	categories,	functors,	and	monads	has	no	real-
world	application,	think	again.	jQuery,	the	popular	JavaScript	library	that	provides	an
enhanced	interface	for	working	with	HTML	is,	in-fact,	a	monadic	library.

The	jQuery	object	is	a	monad	and	its	methods	are	functors.	Really,	they’re	a	special	type
of	functor	called	endofunctors.	Endofunctors	are	functors	that	return	the	same	category	as
the	input,	that	is,	F	::	X	->	X.	Each	jQuery	method	takes	a	jQuery	object	and	returns	a
jQuery	object,	which	allows	methods	to	be	chained,	and	they	will	have	the	type	signature
jFunc	::	jquery-obj	->	jquery-obj.

$('li').add('p.me-too').css('color',	'red').attr({id:'foo'});

This	is	also	what	empowers	jQuery’s	plugin	framework.	If	the	plugin	takes	a	jQuery
object	as	input	and	returns	one	as	output,	then	it	can	be	inserted	into	the	chain.

Let’s	look	at	how	jQuery	was	able	to	implement	this.

Monads	are	the	containers	that	the	functors	“reach	into”	to	get	the	data.	In	this	way,	the
data	can	be	protected	and	controlled	by	the	library.	jQuery	provides	access	to	the
underlying	data,	a	wrapped	set	of	HTML	elements,	via	its	many	methods.

The	jQuery	object	itself	is	written	as	the	result	of	an	anonymous	function	call.

var	jQuery	=	(function	()	{

		var	j	=	function	(selector,	context)	{

				var	jq-obj	=	new	j.fn.init(selector,	context);

				return	jq-obj;

		};

		j.fn	=	j.prototype	=	{

				init:	function	(selector,	context)	{

						if	(!selector)	{

								return	this;

						}

				}

		};

		j.fn.init.prototype	=	j.fn;

		return	j;

})();

In	this	highly	simplified	version	of	jQuery,	it	returns	a	function	that	defines	the	j	object,
which	is	actually	just	an	enhanced	init	constructor.

var	$	=	jQuery();	//	the	function	is	returned	and	assigned	to	`$`

var	x	=	$('#select-me');	//	jQuery	object	is	returned

In	the	same	way	that	functors	lift	values	out	of	a	container,	jQuery	wraps	the	HTML
elements	and	provides	access	to	them	as	opposed	to	modifying	the	HTML	elements
directly.

jQuery	doesn’t	advertise	this	often,	but	it	has	its	own	map()	method	for	lifting	the	HTML
element	objects	out	of	the	wrapper.	Just	like	the	fmap()	method,	the	elements	are	lifted,



something	is	done	with	them,	and	then	they’re	placed	back	into	the	container.	This	is	how
many	of	jQuery’s	commands	work	in	the	backend.

$('li').map(function(index,	element)	{

		//	do	something	to	the	element

		return	element

});

Another	library	for	working	with	HTML	elements,	Prototype,	does	not	work	like	this.
Prototype	alters	the	HTML	elements	directly	via	helpers.	Consequently,	it	has	not	faired	as
well	in	the	JavaScript	community.





Implementing	categories
It’s	about	time	we	formally	defined	category	theory	as	JavaScript	objects.	Categories	are
objects	(types)	and	morphisms	(functions	that	only	work	on	those	types).	It’s	an	extremely
high-level,	totally-declarative	way	to	program,	but	it	ensures	that	the	code	is	extremely
safe	and	reliable—perfect	for	APIs	and	libraries	that	are	worried	about	concurrency	and
type	safety.

First,	we’ll	need	a	function	that	helps	us	create	morphisms.	We’ll	call	it	homoMorph()
because	they’ll	be	homomorphisms.	It	will	return	a	function	that	expects	a	function	to	be
passed	in	and	produces	the	composition	of	it,	based	on	the	inputs.	The	inputs	are	the	types
that	the	morphism	accepts	as	input	and	gives	as	output.	Just	like	our	type	signatures,	that
is,	//	morph	::	num	->	num	->	[num],	only	the	last	one	is	the	output.

var	homoMorph	=	function(	/*	input1,	input2,...,	inputN,	output	*/	)	{

		var	before	=	checkTypes(arrayOf(func)

(Array.prototype.slice.call(arguments,	0,	arguments.length-1)));

		var	after	=	func(arguments[arguments.length-1])

		return	function(middle)	{

				return	function(args)	{

						return	after(middle.apply(this,	before([].slice.apply(arguments))));				

				}

		}

}

//	now	we	don't	need	to	add	type	signature	comments

//	because	now	they're	built	right	into	the	function	declaration

add	=	homoMorph(num,	num,	num)(function(a,b){return	a+b})

add(12,24);	//	returns	36

add('a',	'b');	//	throws	error

homoMorph(num,	num,	num)(function(a,b){

		return	a+b;

})(18,	24);	//	returns	42

The	homoMorph()	function	is	fairly	complex.	It	uses	a	closure	(see	Chapter	2,
Fundamentals	of	Functional	Programming)	to	return	a	function	that	accepts	a	function
and	checks	its	input	and	output	values	for	type	safety.	And	for	that,	it	relies	on	a	helper
function:	checkTypes,	which	is	defined	as	follows:

var	checkTypes	=	function(	typeSafeties	)	{

		arrayOf(func)(arr(typeSafeties));

		var	argLength	=	typeSafeties.length;

		return	function(args)	{

				arr(args);

				if	(args.length	!=	argLength)	{

						throw	new	TypeError('Expected	'+	argLength	+	'	arguments');

				}

				var	results	=	[];

				for	(var	i=0;	i<argLength;	i++)	{

						results[i]	=	typeSafeties[i](args[i]);			

				}

				return	results;



		}

}

Now	let’s	formally	define	some	homomorphisms.

var	lensHM	=	homoMorph(func,	func,	func)(lens);

var	userNameHM	=	lensHM(

		function	(u)	{return	u.getUsernameMaybe()},	//	get

		function	(u,	v)	{	//	set

				u.setUsername(v);

				return	u.getUsernameMaybe();	

		}

)

var	strToUpperCase	=	homoMorph(str,	str)(function(s)	{

		return	s.toUpperCase();

});

var	morphFirstLetter	=	homoMorph(func,	str,	str)(function(f,	s)	{

		return	f(s[0]).concat(s.slice(1));

});

var	capFirstLetter	=	homoMorph(str,	str)(function(s)	{

		return	morphFirstLetter(strToUpperCase,	s)

});

Finally,	we	can	bring	it	on	home.	The	following	example	includes	function	composition,
lenses,	homomorphisms,	and	more.

//	homomorphic	lenses

var	bill	=	new	User();

userNameHM.set(bill,	'William');	//	Returns:	'William'

userNameHM.get(bill);	//	Returns:	'William'

//	compose

var	capatolizedUsername	=	fcompose(capFirstLetter,userNameHM.get);

capatolizedUsername(bill,	'bill');	//	Returns:	'Bill'

//	it's	a	good	idea	to	use	homoMorph	on	.set	and	.get	too

var	getUserName	=	homoMorph(obj,	str)(userNameHM.get);

var	setUserName	=	homoMorph(obj,	str,	str)(userNameHM.set);

getUserName(bill);	//	Returns:	'Bill'

setUserName(bill,	'Billy');	//	Returns:	'Billy'

//	now	we	can	rewrite	capatolizeUsername	with	the	new	setter

capatolizedUsername	=	fcompose(capFirstLetter,	setUserName);

capatolizedUsername(bill,	'will');	//	Returns:	'Will'

getUserName(bill);	//	Returns:	'will'

The	preceding	code	is	extremely	declarative,	safe,	reliable,	and	dependable.

Note
What	does	it	mean	for	code	to	be	declarative?	In	imperative	programming,	we	write
sequences	of	instructions	that	tell	the	machine	how	to	do	what	we	want.	In	functional
programming,	we	describe	relationships	between	values	that	tell	the	machine	what	we
want	it	to	compute,	and	the	machine	figures	out	the	instruction	sequences	to	make	it
happen.	Functional	programming	is	declarative.



Entire	libraries	and	APIs	can	be	constructed	this	way	that	allow	programmers	to	write
code	freely	without	worrying	about	concurrency	and	type	safety	because	those	worries	are
handled	in	the	backend.





Summary
About	one	in	every	2,000	people	has	a	condition	known	as	synesthesia,	a	neurological
phenomenon	in	which	one	sensory	input	bleeds	into	another.	The	most	common	form
involves	assigning	colors	with	letters.	However,	there	is	an	even	rarer	form	where
sentences	and	paragraphs	are	associated	with	tastes	and	feelings.

For	these	people,	they	don’t	read	word	by	word,	sentence	by	sentence.	They	look	at	the
whole	page/document/program	and	get	a	sense	for	how	it	tastes—not	in	the	mouth	but	in
the	mind.	Then	they	put	the	parts	of	the	text	together	like	the	pieces	of	a	puzzle.

This	is	what	it	is	like	to	write	fully	declarative	code:	code	that	describes	the	relationships
between	values	that	tells	the	machine	what	we	want	it	to	compute.	The	parts	of	the
program	are	not	instructions	in	line-by-line	order.	Synesthetics	may	be	able	to	do	it
naturally,	but	with	a	little	practice	anyone	can	learn	how	to	put	the	relational	puzzle	pieces
together.

In	this	chapter,	we	looked	at	several	mathematical	concepts	that	apply	to	functional
programming	and	how	they	allow	us	to	build	relationships	between	data.	Next,	we’ll
explore	recursion	and	other	advanced	topics	in	JavaScript.





Chapter	6.	Advanced	Topics	and	Pitfalls
in	JavaScript
JavaScript	has	been	called	the	“assembly	language	of	the	web”.	The	analogy	(it	isn’t
perfect,	but	which	analogy	is?)	draws	from	the	fact	that	JavaScipt	is	often	a	target	for
compilation,	namely	from	Clojure	and	CoffeeScript,	but	also	from	many	other	sources
such	as	pyjamas	(python	to	JS)	and	Google	Web	Kit	(Java	to	JS).

But	the	analogy	also	references	the	foolish	idea	that	JavaScript	is	as	expressive	and	low-
level	as	x86	assembly.	Perhaps	this	notion	stems	from	the	fact	that	JavaScript	has	been
bashed	for	its	design	flaws	and	oversights	ever	since	it	was	first	shipped	with	Netscape
back	in	1995.	It	was	developed	and	released	in	a	hurry,	before	it	could	be	fully	developed.
And	because	of	that,	some	questionable	design	choices	made	its	way	into	JavaScript,	the
language	that	soon	became	the	de-facto	scripting	language	of	the	web.	Semicolons	were	a
big	mistake.	So	were	its	ambiguous	methods	for	defining	functions.	Is	it	var	foo	=
function();	or	function	foo();?

Functional	programming	is	an	excellent	way	to	side-step	some	of	these	mistakes.	By
focusing	on	the	fact	that	JavaScript	is	truly	a	functional	language,	it	becomes	clear	that,	in
the	preceding	example	about	the	different	ways	to	declare	a	function,	it’s	best	to	declare
functions	as	variables.	And	that	semicolons	are	mostly	just	syntactic	sugar	to	make
JavaScript	appear	more	C-like.

But	always	remember	the	language	you	are	working	with.	JavaScript,	like	any	other
language,	has	its	pitfalls.	And,	when	programming	in	a	style	that	often	skirts	the	bleeding
edge	of	what’s	possible,	those	minor	stumbles	can	become	non-recoverable	gotchas.	Some
of	these	gotchas	include:

Recursion
Variable	scope	and	closures
Function	declarations	vs.	function	expressions

However,	these	issues	can	be	overcome	with	a	little	attention.



Recursion
Recursion	is	very	important	to	functional	programming	in	any	language.	Many	functional
languages	go	so	far	as	to	require	recursion	for	iteration	by	not	providing	for	and	while
loop	statements;	this	is	only	possible	when	tail-call	elimination	is	guaranteed	by	the
language,	which	is	not	the	case	for	JavaScript.	A	quick	primer	on	recursion	was	given	in
Chapter	2,	Fundamentals	of	Functional	Programming.	But	in	this	section,	we’ll	dig
deeper	into	exactly	how	recursion	works	in	JavaScript.



Tail	recursion
JavaScript’s	routine	for	handling	recursion	is	known	as	tail	recursion,	a	stack-based
implementation	of	recursion.	This	means	that,	for	every	recursive	call,	there	is	a	new
frame	in	the	stack.

To	illustrate	the	problems	that	can	arise	from	this	method,	let’s	use	the	classic	recursive
algorithm	for	factorials.

var	factorial	=	function(n)	{

		if	(n	==	0)	{

				//	base	case

				return	1;

		}

		else	{

				//	recursive	case

				return	n	*	factorial(n-1);

		}

}

The	algorithm	will	call	itself	n	times	to	get	the	answer.	It’s	literally	computing	(1	x	1	x	2
x	3	x	…	x	N).	That	means	the	time	complexity	is	O(n).

Note
O(n),	pronounced	“big	oh	to	the	n,”	means	that	the	complexity	of	the	algorithm	will	grow
at	a	rate	of	n	as	the	size	of	the	input	grows,	which	is	leaner	growth.	O(n2)	is	exponential
growth,	O(log(n))	is	logarithmic	growth,	and	so	on.	This	notation	can	be	used	for	time
complexity	as	well	as	space	complexity.

But,	because	a	new	frame	in	the	memory	stack	is	allocated	for	each	iteration,	the	space
complexity	is	also	O(n).	This	is	a	problem.	This	means	that	memory	will	be	consumed	at
such	a	rate	the	memory	limit	will	be	exceeded	far	too	easily.	On	my	laptop,
factorial(23456)	returns	Uncaught	Error:	RangeError:	Maximum	call	stack	size
exceeded.

While	calculating	the	factorial	of	23,456	is	a	frivolous	endeavor,	you	can	be	assured	that
many	problems	that	are	solved	with	recursion	will	grow	to	that	size	without	too	much
trouble.	Consider	the	case	of	data	trees.	The	tree	could	be	anything:	search	applications,
file	systems,	routing	tables,	and	so	on.	Below	is	a	very	simple	implementation	of	the	tree
traversal	function:

var	traverse	=	function(node)	{

		node.doSomething();	//	whatever	work	needs	to	be	done

		node.childern.forEach(traverse);	//	many	recursive	calls

}

With	just	two	children	per	node,	both	time	complexity	and	space	complexity,	(in	the	worst
case,	where	the	entire	tree	must	be	traversed	to	find	the	answer),	would	be	O(n2)	because
there	would	be	two	recursive	calls	each.	With	many	children	per	node,	the	complexity
would	be	O(nm)	where	m	is	the	number	of	children.	And	recursion	is	the	preferred
algorithm	for	tree	traversal;	a	while	loop	would	be	much	more	complex	and	would	require



the	maintenance	of	a	stack.

Exponential	growth	like	this	would	mean	that	it	would	not	take	a	very	large	tree	to	throw	a
RangeError	exception.	There	must	be	a	better	way.

The	Tail-call	elimination
We	need	a	way	to	eliminate	the	allocation	of	new	stack	frames	for	every	recursive	call.
This	is	known	as	tail-call	elimination.

With	tail-call	elimination,	when	a	function	returns	the	result	of	calling	itself,	the	language
doesn’t	actually	perform	another	function	call.	It	turns	the	whole	thing	into	a	loop	for	you.

OK,	so	how	do	we	do	this?	With	lazy	evaluation.	If	we	could	rewrite	it	to	fold	over	a	lazy
sequence,	such	that	the	function	returns	a	value	or	it	returns	the	result	of	calling	another
function	without	doing	anything	with	that	result,	then	new	stack	frames	don’t	need	to	be
allocated.

To	put	it	in	“tail	recursion	form”,	the	factorial	function	would	have	to	be	rewritten	such
that	the	inner	procedure	fact	calls	itself	last	in	the	control	flow,	as	shown	in	the	following
code	snippet:

var	factorial	=	function(n)	{

		var	_fact	=	function(x,	n)	{

				if	(n	==	0)	{

						//	base	case

						return	x;

				}

				else	{

						//	recursive	case

						return	_fact(n*x,	n-1);

				}

		}

		return	fact(1,	n);

}

Note
Instead	of	having	the	result	produced	by	the	first	function	in	the	recursion	tail	(like	in	n	*
factorial(n-1)),	the	result	is	computed	going	down	the	recursion	tail	(with	the	call	to
_fact(r*n,	n-1))	and	is	produced	by	the	last	function	in	this	tail	(with	return	r;).	The
computation	goes	only	one	way	down,	not	on	its	way	up.	It’s	relatively	easy	to	process	it
as	an	iteration	for	the	interpreter.

However,	tail-call	elimination	does	not	work	in	JavaScript.	Put	the	above	code	into	your
favorite	JavaScript	engine	and	factorial(24567)	still	returns	Uncaught	Error:
RangeError:	Maximum	call	stack	size	exceeded	exception.	Tail-call	elimination	is
listed	as	a	new	feature	to	be	included	in	the	next	release	of	ECMAScript,	but	it	will	be
some	time	before	all	browsers	implement	it.

JavaScript	cannot	optimize	functions	that	are	put	into	tail	recursion	form.	It’s	a	feature	of
the	language	specification	and	runtime	interpreter,	plain	and	simple.	It	has	to	do	with	how
the	interpreter	acquires	resources	for	stack	frames.	Some	languages	will	reuse	the	same



stack	frame	when	it	doesn’t	need	to	remember	anything	new,	like	in	the	preceding
function.	This	is	how	tail-call	elimination	reduces	both	time	and	space	complexity.

Unfortunately,	JavaScript	does	not	do	this.	But	if	it	did,	it	would	reorganize	the	stack
frames	from	this:

call	factorial	(3)

		call	fact	(3	1)

				call	fact	(2	3)

						call	fact	(1	6)

								call	fact	(0	6)

								return	6

						return	6

				return	6

		return	6

return	6

into	the	following:

call	factorial	(3)

		call	fact	(3	1)

		call	fact	(2	3)

		call	fact	(1	6)

		call	fact	(0	6)

		return	6

return	6



Trampolining
The	solution?	A	process	known	as	trampolining.	It’s	a	way	to	“hack”	the	concept	of	tail-
call	elimination	into	a	program	by	using	thunks.

Note
Thunks	are,	for	this	purpose,	expressions	with	arguments	that	wrap	anonymous	functions
with	no	arguments	of	their	own.	For	example:	function(str){return	function()
{console.log(str)}}.	This	prevents	the	expression	from	being	evaluated	until	a
receiving	function	calls	the	anonymous	function.

A	trampoline	is	a	function	that	takes	a	function	as	input	and	repeatedly	executes	its
returned	value	until	something	other	than	a	function	is	returned.	A	simple	implementation
is	shown	in	the	following	code	snippet:

var	trampoline	=	function(f)	{

		while	(f	&&	f	instanceof	Function)	{

				f	=	f.apply(f.context,	f.args);

		}

		return	f;

}

To	actually	implement	tail-call	elimination,	we	need	to	use	thunks.	For	this,	we	can	use	the
bind()	function	that	allows	us	to	apply	a	method	to	one	object	with	the	this	keyword
assigned	to	another.	Internally,	it’s	the	same	as	the	call	keyword,	but	it’s	chained	to	the
method	and	returns	a	new	bound	function.	The	bind()	function	actually	does	partial
application,	though	in	a	very	limited	way.

var	factorial	=	function(n)	{

		var	_fact	=	function(x,	n)	{

				if	(n	==	0)	{

						//	base	case

						return	x;

				}

				else	{

						//	recursive	case

						return	_fact.bind(null,	n*x,	n-1);

				}

		}

		return	trampoline(_fact.bind(null,	1,	n));

}

But	writing	the	fact.bind(null,	...)	method	is	cumbersome	and	would	confuse
anybody	reading	the	code.	Instead,	let’s	write	our	own	function	for	creating	thunks.	There
are	a	few	things	the	thunk()	function	must	do:

thunk()	function	must	emulate	the	_fact.bind(null,	n*x,	n-1)	method	that
returns	a	non-evaluated	function
The	thunk()	function	should	enclose	two	more	functions:

For	processing	the	give	function,	and
For	processing	the	function	arguments	that	will	be	used	when	the	given	function



is	invoked

With	that,	we’re	ready	to	write	the	function.	We	only	need	a	few	lines	of	code	to	write	it.

var	thunk	=	function	(fn)	{

		return	function()	{

				var	args	=	Array.prototype.slice.apply(arguments);

				return	function()	{	return	fn.apply(this,	args);	};

		};

};

Now	we	can	use	the	thunk()	function	in	our	factorial	algorithm	like	this:

var	factorial	=	function(n)	{

		var	fact	=	function(x,	n)	{

				if	(n	==	0)	{

						return	x;

				}

				else	{

						return	thunk(fact)(n	*	x,	n	-	1);

				}

		}

		return	trampoline(thunk(fact)(1,	n));

}

But	again,	we	can	simplify	it	just	a	bit	further	by	defining	the	_fact()	function	as	a
thunk()	function.	By	defining	the	inner	function	as	a	thunk()	function,	we’re	relieved	of
having	to	use	the	thunk()	function	both	inside	the	inner	function	definition	and	in	the
return	statement.

var	factorial	=	function(n)	{

		var	_fact	=	thunk(function(x,	n)	{

				if	(n	==	0)	{

						//	base	case

						return	x;

				}

				else	{

						//	recursive	case

						return	_fact(n	*	x,	n	-	1);

				}

		});

		return	trampoline(_fact(1,	n));

}

The	result	is	beautiful.	What	seems	like	the	function	_fact()	being	recursively	called	for
a	tail-free	recursion	is	almost	transparently	processed	as	an	iteration!

Finally,	let’s	see	how	the	trampoline()	and	thunk()	functions	work	with	our	more
meaningful	example	of	tree	traversal.	The	following	is	a	crude	example	of	how	a	data	tree
could	be	traversed	using	trampolining	and	thunks:

var	treeTraverse	=	function(trunk)	{

		var	_traverse	=	thunk(function(node)	{

				node.doSomething();

				node.children.forEach(_traverse);

		}



		trampoline(_traverse(trunk));

}

We’ve	solved	the	issue	of	tail	recursion.	But	is	there	an	even	better	way?	What	if	we	could
simply	convert	the	recursive	function	to	a	non-recursive	function?	Up	next,	we’ll	look	at
how	to	do	just	that.



The	Y-combinator
The	Y-combinator	is	one	of	those	things	in	computer	science	that	amaze	even	the	deftest
of	programming	masterminds.	Its	ability	to	automatically	convert	recursive	functions	to
non-recursive	functions	is	why	Douglas	Crockford	calls	it	“one	of	the	most	strange	and
wonderful	artifacts	of	computer	science”,	and	Sussman	and	Steele	once	said,	“That	this
manages	to	work	is	truly	remarkable”.

So	a	truly-remarkable,	wonderfully	strange	artifact	of	computer	science	that	brings
recursive	functions	to	their	knees	must	be	massive	and	complex,	right?	No,	not	exactly.	Its
implementation	in	JavaScript	is	only	nine,	very	odd,	lines	of	code.	They	are	as	follows:

var	Y	=	function(F)	{

		return	(function	(f)	{

				return	f(f);

		}	(function	(f)	{

				return	F(function	(x)	{

						return	f(f)(x);

				});

		}));

}

Here’s	how	it	works:	it	finds	the	“fixed	point”	of	the	function	passed	in	as	an	argument.
Fixed	points	offer	another	way	to	think	about	functions	rather	than	recursion	and	iteration
in	the	theory	of	computer	programming.	And	it	does	this	with	only	the	use	of	anonymous
function	expressions,	function	applications,	and	variable	references.	Note	that	Y	does	not
reference	itself.	In	fact,	all	those	functions	are	anonymous.

As	you	might	have	guessed,	the	Y-combinator	came	out	of	lambda	calculus.	It’s	actually
derived	with	the	help	of	another	combinator	called	the	U-combinator.	Combinators	are
special	higher-order	functions	that	only	use	function	application	and	earlier	defined
combinators	to	define	a	result	from	its	input.

To	demonstrate	the	Y-combinator,	we’ll	again	turn	to	the	factorial	problem,	but	we	need	to
define	the	factorial	function	a	little	differently.	Instead	of	writing	a	recursive	function,	we
write	a	function	that	returns	a	function	that	is	the	mathematical	definition	of	factorials.
Then	we	can	pass	this	into	the	Y-combinator.

var	FactorialGen	=	function(factorial)	{

		return	(function(n)	{

				if	(n	==	0)	{

						//	base	case

						return	1;

				}

				else	{

						//	recursive	case

						return	n	*	factorial(n	–	1);

				}

		});

};

Factorial	=	Y(FactorialGen);

Factorial(10);	//	3628800



However,	when	we	give	it	a	significantly	large	number,	the	stack	overflows	just	as	if	tail
recursion	without	trampolining	was	used.

Factorial(23456);	//	RangeError:	Maximum	call	stack	size	exceeded

But	we	can	use	trampolining	with	the	Y-combinator	as	in	the	following:

var	FactorialGen2	=	function	(factorial)	{

		return	function(n)	{

				var	factorial	=	thunk(function	(x,	n)	{

						if	(n	==	0)	{

								return	x;

						}

						else	{

								return	factorial(n	*	x,	n	-	1);

						}

				});

				return	trampoline(factorial(1,	n));

		}

};

var	Factorial2	=	Y(FactorialGen2)

Factorial2(10);	//	3628800

Factorial2(23456);	//	Infinity

We	can	also	rearrange	the	Y-combinator	to	perform	something	called	memoization.

Memoization
Memoization	is	the	technique	of	storing	the	result	of	expensive	function	calls.	When	the
function	is	later	called	with	the	same	arguments,	the	stored	result	is	returned	rather	than
computing	the	result	again.

Although	the	Y-combinator	is	much	faster	than	recursion,	it	is	still	relatively	slow.	To
speed	it	up,	we	can	create	a	memoizing	fixed-point	combinator:	a	Y-like	combinator	that
caches	the	results	of	intermediate	function	calls.

var	Ymem	=	function(F,	cache)	{

		if	(!cache)	{

				cache	=	{}	;	//	Create	a	new	cache.

		}

		return	function(arg)	{

				if	(cache[arg])	{

						//	Answer	in	cache

						return	cache[arg]	;	

				}

				//	else	compute	the	answer

				var	answer	=	(F(function(n){

						return	(Ymem(F,cache))(n);

				}))(arg);	//	Compute	the	answer.

				cache[arg]	=	answer;	//	Cache	the	answer.

				return	answer;

		};

}

So	how	much	faster	is	it?	By	using	http://jsperf.com/,	we	can	compare	the	performance.



The	following	results	are	with	random	numbers	between	1	and	100.	We	can	see	that	the
memoizing	Y-combinator	is	much,	much	faster.	And	adding	trampolining	to	it	does	not
slow	it	down	by	much.	You	can	view	the	results	and	run	the	tests	yourself	at	this	URL:
http://jsperf.com/memoizing-y-combinator-vs-tail-call-optimization/7.

The	bottom	line	is:	the	most	efficient	and	safest	method	of	performing	recursion	in
JavaScript	is	to	use	the	memoizing	Y-combinator	with	tail-call	elimination	via
trampolining	and	thunks.





Variable	scope
The	scope	of	variables	in	JavaScript	is	not	natural.	In	fact,	sometimes	it’s	downright
counter-intuitive.	They	say	that	JavaScript	programmers	can	be	judged	by	how	well	they
understand	scope.



Scope	resolutions
First,	let’s	go	over	the	different	scope	resolutions	in	JavaScript.

JavaScript	uses	scope	chains	to	establish	the	scope	of	variables.	When	resolving	a
variable,	it	starts	at	the	innermost	scope	and	searches	outwards.

Global	scope
Variables,	functions,	and	objects	defined	at	this	level	are	available	to	any	code	in	the	entire
program.	This	is	the	outermost	scope.

var	x	=	'hi';

function	a()	{

		console.log(x);

}

a();	//	'hi'

Local	scope
Each	function	described	has	its	own	local	scope.	Any	function	defined	within	another
function	has	a	nested	local	scope	that	is	linked	to	the	outer	function.	Almost	always,	it’s
the	position	in	the	source	that	defines	the	scope.

var	x	=	'hi';

function	a()	{

		console.log(x);

}

function	b()	{

		var	x	=	'hello';

		console.log(x);

}

b();	//	hello

a();	//	hi

Local	scope	is	only	for	functions	and	not	for	any	expression	statements	(if,	for,	while,
and	so	on),	which	is	different	from	how	most	languages	treat	scope.

function	c()	{

		var	y	=	'greetings';

		if	(true)	{

				var	y	=	'guten	tag';

		}

		console.log(y);

}

function	d()	{

		var	y	=	'greetings';

		function	e()	{

				var	y	=	'guten	tag';

		}

		console.log(y)

}

c();	//	'guten	tag'

d();	//	'greetings'



In	functional	programming,	this	isn’t	as	much	of	a	concern	because	functions	are	used
more	often	and	expression	statements	less	often.	For	example:

function	e(){

		var	z	=	'namaste';

		[1,2,3].foreach(function(n)	{

				var	z	=	'aloha';

		}

		isTrue(function(){

				var	z	=	'good	morning';

		});

		console.log(z);

}

e();	//	'namaste'

Object	properties
Object	properties	have	their	own	scope	chains	as	well.

var	x	=	'hi';

var	obj	=	function(){

		this.x	=	'hola';

};

var	foo	=	new	obj();

console.log(foo.x);	//	'hola'

foo.x	=	'bonjour';

console.log(foo.x);	//	'bonjour'

The	object’s	prototype	is	further	down	the	scope	chain.

obj.prototype.x	=	'greetings';

obj.prototype.y	=	'konnichi	ha';

var	bar	=	new	obj();

console.log(bar.x);	//	still	prints	'hola'

console.log(bar.y);	//	'konnichi	ha'

This	isn’t	even	close	to	being	comprehensive,	but	these	three	types	of	scope	are	enough	to
get	started.



Closures
One	problem	with	this	scope	structure	is	that	it	leaves	no	room	for	private	variables.
Consider	the	following	code	snippet:

var	name	=	'Ford	Focus';

var	year	=	'2006';

var	millage	=	123456;

function	getMillage(){

		return	millage;

}

function	updateMillage(n)	{

		millage	=	n;

}

These	variables	and	functions	are	global,	which	means	it	would	be	too	easy	for	code	later
down	the	program	to	accidentally	overwrite	them.	One	solution	would	be	to	encapsulate
them	into	a	function	and	call	that	function	immediately	after	defining	it.

var	car	=	function(){

		var	name	=	'Ford	Focus';

		var	year	=	'2006';

		var	millage	=	123456;

		function	getMillage(){

				return	Millage;

		}

		function	updateMillage(n)	{

				millage	=	n;

		}

}();

Nothing	is	happening	outside	the	function,	so	we	ought	to	discard	the	function	name	by
making	it	anonymous.

(function(){

		var	name	=	'Ford	Focus';

		var	year	=	'2006';

		var	millage	=	123456;

		function	getMillage(){

				return	millage;

		}

		function	updateMillage(n)	{

				millage	=	n;

		}

})();

To	make	the	functions	getValue()	and	updateMillage()	available	outside	the
anonymous	function,	we’ll	need	to	return	them	in	an	object	literal	as	shown	in	the
following	code	snippet:

var	car	=	function(){

		var	name	=	'Ford	Focus';

		var	year	=	'2006';

		var	millage	=	123456;

		return	{



				getMillage:	function(){

						return	millage;

				},

				updateMillage:	function(n)	{

						millage	=	n;

				}

		}

}();

console.log(	car.getMillage()	);	//	works

console.log(	car.updateMillage(n)	);	//	also	works

console.log(	car.millage	);	//	undefined

This	gives	us	pseudo-private	variables,	but	the	problems	don’t	stop	there.	The	following
section	explores	more	issues	with	variable	scope	in	JavaScript.



Gotchas
Many	variable	scope	nuances	can	be	found	throughout	JavaScript.	The	following	is	by	no
means	a	comprehensive	list,	but	it	covers	the	most	common	cases:

The	following	will	output	4,	not	‘undefined’	as	one	would	expect:

for	(var	n	=	4;	false;	)	{	}	console.log(n);

This	is	due	to	the	fact	that,	in	JavaScript,	variable	definition	happens	at	the	beginning
of	the	corresponding	scope,	not	just	when	it	is	declared.

If	you	define	a	variable	in	the	outer	scope,	and	then	have	an	if	statement	define	a
variable	inside	the	function	with	the	same	name,	even	if	that	if	branch	isn’t	reached,
it	is	redefined.	An	example:

var	x	=	1;

function	foo()	{

		if	(false)	{

				var	x	=	2;

		}

		return	x;

}

foo();	//	Return	value:	'undefined',	expected	return	value:

2

Again,	this	is	caused	by	moving	the	variable	definition	at	the	beginning	of	the	scope
with	the	undefined	value.

In	the	browser,	global	variables	are	really	stored	in	the	window	object.

window.a	=	19;

console.log(a);	//	Output:	19

a	in	the	global	scope	means	a	as	an	attribute	of	the	current	context,	so	a===this.a
and	window	object	in	a	browser	act	as	an	equivalent	of	the	this	keyword	in	the	global
scope.

The	first	two	examples	are	a	result	of	a	feature	of	JavaScript	known	as	hoisting,	which
will	be	a	critical	concept	in	the	next	section	about	writing	functions.





Function	declarations	versus	function
expressions	versus	the	function
constructor
What	is	the	difference	between	these	three	statements?

function	foo(n){	return	n;	}

var	foo	=	function(n){	return	n;	};

var	foo	=	new	Function('n',	'return	n');

At	first	glance,	they’re	merely	different	ways	to	write	the	same	function.	But	there’s	a
little	more	going	on	here.	And	if	we’re	to	take	full	advantage	of	functions	in	JavaScript	in
order	to	manipulate	them	into	a	functional	programming	style,	then	we’d	better	be	able	to
get	this	right.	If	there	is	a	better	way	to	do	something	in	computer	programming,	then	that
one	way	should	be	the	only	way.



Function	declarations
Function	declarations,	sometimes	called	function	statements,	define	a	function	by	using
the	function	keyword.

function	foo(n)	{

		return	n;

}

Functions	that	are	declared	with	this	syntax	are	hoisted	to	the	top	of	the	current	scope.
What	this	actually	means	is	that,	even	if	the	function	is	defined	several	lines	down,
JavaScript	knows	about	it	and	can	use	it	earlier	in	the	scope.	For	example,	the	following
will	correctly	print	6	to	the	console:

foo(2,3);

function	foo(n,	m)	{

		console.log(n*m);

}



Function	expressions
Named	functions	can	also	be	defined	as	an	expression	by	defining	an	anonymous	function
and	assigning	it	to	a	variable.

var	bar	=	function(n,	m)	{

		console.log(n*m);

};

They	are	not	hoisted	like	function	declarations	are.	This	is	because,	while	function
declarations	are	hoisted,	variable	declarations	are	not.	For	example,	this	will	not	work	and
will	throw	an	error:

bar(2,3);

var	bar	=	function(n,	m)	{

		console.log(n*m);

};

In	functional	programming,	we’re	going	to	want	to	use	function	expressions	so	we	can
treat	the	functions	like	variables,	making	them	available	to	be	used	as	callbacks	and
arguments	to	higher-order	functions	such	as	map()	functions.	Defining	functions	as
expressions	makes	it	more	obvious	that	they’re	variables	assigned	to	a	function.	Also,	if
we’re	going	to	write	functions	in	one	style,	we	should	write	all	functions	in	that	style	for
the	sake	of	consistency	and	clarity.



The	function	constructor
JavaScript	actually	has	a	third	way	to	create	functions:	with	the	Function()	constructor.
Just	like	function	expressions,	functions	defined	with	the	Function()	constructor	are	not
hoisted.

var	func	=	new	Function('n','m','return	n+m');

func(2,3);	//	returns	5

But	the	Function()	constructor	is	not	only	confusing,	it	is	also	highly	dangerous.	No
syntax	correction	can	happen,	no	optimization	is	possible.	It’s	far	easier,	safer,	and	less
confusing	to	write	the	same	function	as	follows:

var	func	=	function(n,m){return	n+m};

func(2,3);	//	returns	5



Unpredictable	behavior
So	the	difference	is	that	function	declarations	are	hoisted	while	function	expressions	are
not.	This	can	cause	unexpected	things	to	happen.	Consider	the	following:

function	foo()	{

		return	'hi';

}

console.log(foo());

function	foo()	{

		return	'hello';

}

What’s	actually	printed	to	the	console	is	hello.	This	is	due	to	the	fact	that	the	second
definition	of	the	foo()	function	is	hoisted	to	the	top,	making	it	the	definition	that	is
actually	used	by	the	JavaScript	interpreter.

While	at	first	this	may	not	seem	like	a	critical	difference,	in	functional	programming	this
can	cause	mayhem.	Consider	the	following	code	snippet:

if	(true)	{

		function	foo(){console.log('one')};

}

else	{

		function	foo(){console.log('two')};

}

foo();

When	the	foo()	function	is	called,	two	is	printed	to	the	console,	not	one!

Finally,	there	is	a	way	to	combine	both	function	expressions	and	declarations.	It	works	as
follows:

var	foo	=	function	bar(){	console.log('hi');	};

foo();	//	'hi'

bar();	//	Error:	bar	is	not	defined

It	makes	very	little	sense	to	use	this	method	because	the	name	used	in	the	declaration	(the
bar()	function	in	the	preceding	example)	is	not	available	outside	the	function	and	causes
confusion.	It	would	only	be	appropriate	for	recursion,	for	example:

var	foo	=	function	factorial(n)	{

		if	(n	==	0)	{

				return	1;

		}

else	{

				return	n	*	factorial(n-1);

		}

};

foo(5);





Summary
JavaScript	has	been	called	the	“assembly	language	of	the	web,”	because	it’s	as	ubiquitous
and	unavoidable	as	x86	assembly.	It’s	the	only	language	that	runs	on	all	browsers.	It’s	also
flawed,	yet	referring	to	it	as	a	low-level	language	is	missing	the	mark.

Instead,	think	of	JavaScript	as	the	raw	coffee	beans	of	the	web.	Sure,	some	of	the	beans
are	damaged	and	a	few	are	rotten.	But	if	the	good	ones	are	selected,	roasted,	and	brewed
by	a	skilled	barista,	the	beans	can	be	transformed	into	a	brilliant	jamocha	that	cannot	be
had	just	once	and	forgotten.	It’s	consumption	becomes	a	daily	custom,	life	without	it
would	be	static,	harder	to	perform,	and	much	less	exciting.	Some	even	prefer	to	enhance
the	brew	with	plug-ins	and	add-ons	such	as	cream,	sugar,	and	cocoa,	which	complement	it
very	well.

One	of	JavaScript’s	biggest	critics,	Douglas	Crawford,	was	quoted	as	saying	“There	are
certainly	a	lot	of	people	who	refuse	to	consider	the	possibility	that	JavaScript	got	anything
right.	I	used	to	be	one	of	those	guys.	But	now	I	continue	to	be	amazed	by	the	brilliance
that	is	in	there”.

JavaScript	turned	out	to	be	pretty	awesome.





Chapter	7.	Functional	and	Object-
oriented	Programming	in	JavaScript
You	will	often	hear	that	JavaScript	is	a	blank	language,	where	blank	is	either	object-
oriented,	functional,	or	general-purpose.	This	book	has	focused	on	JavaScript	as	a
functional	language	and	has	gone	to	great	lengths	to	prove	that	it	is.	But	the	truth	is	that
JavaScript	is	a	general-purpose	language,	meaning	it’s	fully	capable	of	multiple
programming	styles.	Like	Python	and	F#,	JavaScript	is	multi-paradigm.	But	unlike	those
languages,	JavaScript’s	OOP	side	is	prototype-based	while	most	other	general-purpose
languages	are	class-based.

In	this	final	chapter,	we	will	relate	both	functional	and	object-oriented	programming	to
JavaScript,	and	see	how	the	two	paradigms	can	complement	each	other	and	coexist	side-
by-side.	In	this	chapter	the	following	topics	will	be	covered:

How	can	JavaScript	be	both	functional	and	OOP?
JavaScript’s	OOP	–	using	prototypes
How	to	mix	functional	and	OOP	in	JavaScript
Functional	inheritance
Functional	mixins

Better	code	is	the	goal.	Functional	and	object-oriented	programming	are	just	means	to	this
end.



JavaScript	–	the	multi-paradigm	language
If	object-oriented	programming	means	treating	all	variables	as	objects,	and	functional
programming	means	treating	all	functions	as	variables,	then	can’t	functions	be	treated	like
objects?	In	JavaScript,	they	can.

But	saying	that	functional	programming	means	treating	functions	as	variables	is	somewhat
inaccurate.	A	better	way	to	put	it	is:	functional	programming	means	treating	everything	as
a	value,	especially	functions.

A	better	way	still	to	describe	functional	programming	may	be	to	call	it	declarative.
Independent	of	the	imperative	branch	of	programming	styles,	declarative	programming
expresses	the	logic	of	computation	required	to	solve	the	problem.	The	computer	is	told
what	the	problem	is	rather	than	the	procedure	for	how	to	solve	it.

Meanwhile,	object-oriented	programming	is	derived	from	the	imperative	programming
style:	the	computer	is	given	step-by-step	instructions	for	how	to	solve	the	problem.	OOP
mandates	that	the	instructions	for	computation	(methods)	and	the	data	they	work	on
(member	variables)	be	organized	into	units	called	objects.	The	only	way	to	access	that
data	is	through	the	object’s	methods.

So	how	can	these	two	styles	be	integrated	together?

The	code	inside	the	object’s	methods	is	typically	written	in	an	imperative	style.	But
what	if	it	was	in	a	functional	style?	After	all,	OOP	doesn’t	exclude	immutable	data
and	higher-order	functions.
Perhaps	a	purer	way	to	mix	the	two	would	be	to	treat	objects	both	as	functions	and	as
traditional,	class-based	objects	at	the	same	time.
Maybe	we	can	simply	include	several	ideas	from	functional	programming—such	as
promises	and	recursion—into	our	object-oriented	application.
OOP	covers	topics	such	as	encapsulation,	polymorphism,	and	abstraction.	So	does
functional	programming,	it	just	goes	about	it	in	a	different	way.	So	maybe	we	can
include	several	ideas	from	object-oriented	programming	in	our	functional-oriented
application.

The	point	is:	OOP	and	FP	can	be	mixed	together	and	there	are	several	ways	to	do	it.
They’re	not	exclusive	of	each	other.





JavaScript’s	object-oriented
implementation	–	using	prototypes
JavaScript	is	a	class-less	language.	That’s	not	to	mean	it	is	less	fashionable	or	more	blue-
collar	than	other	computer	languages;	class-less	means	it	doesn’t	have	a	class	structure	in
the	same	way	that	object-oriented	languages	do.	Instead,	it	uses	prototypes	for	inheritance.

Although	this	may	be	baffling	to	programmers	with	backgrounds	in	C++	and	Java,
prototype-based	inheritance	can	be	much	more	expressive	than	traditional	inheritance.	The
following	is	a	brief	comparison	between	the	differences	between	C++	and	JavaScript:

C++ JavaScript

Strongly	typed Loosely	typed

Static Dynamic

Class-based Prototype-based

Classes Functions

Constructors Functions

Methods Functions



Inheritance
Before	we	go	much	further,	let’s	make	sure	we	fully	understand	the	concept	of	inheritance
in	object-oriented	programming.	Class-based	inheritance	is	demonstrated	in	the	following
pseudo-code:

class	Polygon	{

		int	numSides;

		function	init(n)	{

				numSides	=	n;

		}

}

class	Rectangle	inherits	Polygon	{

		int	width;

		int	length;

		function	init(w,	l)	{

				numSides	=	4;

				width	=	w;

				length	=	l;

		}

		function	getArea()	{

				return	w	*	l;

		}

}

class	Square	inherits	Rectangle	{

		function	init(s)	{

				numSides	=	4;

				width	=	s;

				length	=	s;

		}

}

The	Polygon	class	is	the	parent	class	the	other	classes	inherit	from.	It	defines	just	one
member	variable,	the	number	of	sides,	which	is	set	in	the	init()	function.	The	Rectangle
subclass	inherits	from	the	Polygon	class	and	adds	two	more	member	variables,	length	and
width,	and	a	method,	getArea().	It	doesn’t	need	to	define	the	numSides	variable	because
it	was	already	defined	by	the	class	it	inherits	from,	and	it	also	overrides	the	init()
function.	The	Square	class	carries	on	this	chain	of	inheritance	even	further	by	inheriting
from	the	Rectangle	class	for	its	getArea()	method.	By	simply	overriding	the	init()
function	again	such	that	the	length	and	width	are	the	same,	the	getArea()	function	can
remain	unchanged	and	less	code	needs	to	be	written.

In	a	traditional	OOP	language,	this	is	what	inheritance	is	all	about.	If	we	wanted	to	add	a
color	property	to	all	the	objects,	all	we	would	have	to	do	is	add	it	to	the	Polygon	object
without	having	to	modify	any	of	the	objects	that	inherit	from	it.



JavaScript’s	prototype	chain
Inheritance	in	JavaScript	comes	down	to	prototypes.	Each	object	has	an	internal	property
known	as	its	prototype,	which	is	a	link	to	another	object.	That	object	has	a	prototype	of	its
own.	This	pattern	can	repeat	until	an	object	is	reached	that	has	undefined	as	its	prototype.
This	is	known	as	the	prototype	chain,	and	it’s	how	inheritance	works	in	JavaScript.	The
following	diagram	explain	the	inheritance	in	JavaScirpt:

When	running	a	search	for	an	object’s	function	definition,	JavaScript	“walks”	the
prototype	chain	until	it	finds	the	first	definition	of	a	function	with	the	right	name.
Therefore,	overriding	it	is	as	simple	as	providing	a	new	definition	on	the	prototype	of	the
subclass.



Inheritance	in	JavaScript	and	the	Object.create()
method
Just	as	there	are	many	ways	to	create	objects	in	JavaScript,	there	are	also	many	ways	to
replicate	class-based,	classical	inheritance.	But	the	one	preferred	way	to	do	it	is	with	the
Object.create()	method.

var	Polygon	=	function(n)	{

		this.numSides	=	n;

}

var	Rectangle	=	function(w,	l)	{

		this.width	=	w;

		this.length	=	l;

}

//	the	Rectangle's	prototype	is	redefined	with	Object.create

Rectangle.prototype	=	Object.create(Polygon.prototype);

//	it's	important	to	now	restore	the	constructor	attribute

//	otherwise	it	stays	linked	to	the	Polygon

Rectangle.prototype.constructor	=	Rectangle;

//	now	we	can	continue	to	define	the	Rectangle	class

Rectangle.prototype.numSides	=	4;

Rectangle.prototype.getArea	=	function()	{

		return	this.width	*	this.length;

}

var	Square	=	function(w)	{

		this.width	=	w;

		this.length	=	w;

}

Square.prototype	=	Object.create(Rectangle.prototype);

Square.prototype.constructor	=	Square;

var	s	=	new	Square(5);

console.log(	s.getArea()	);	//	25

This	syntax	may	seem	unusual	to	many	but,	with	a	little	practice,	it	will	become	familiar.
The	prototype	keyword	must	be	used	to	gain	access	to	the	internal	property,
[[Prototype]],	which	all	objects	have.	The	Object.create()	method	declares	a	new
object	with	a	specified	object	for	its	prototype	to	inherit	from.	In	this	way,	classical
inheritance	can	be	achieved	in	JavaScript.

Note
The	Object.create()	method	was	introduced	in	ECMAScript	5.1	in	2011,	and	it	was
billed	as	the	new	and	preferred	way	to	create	objects.	This	was	just	one	of	many	attempts
to	integrate	inheritance	into	JavaScript.	Thankfully,	this	method	works	pretty	well.

We	saw	this	structure	of	inheritance	when	building	the	Maybe	classes	in	Chapter	5,



Category	Theory.	Here	are	the	Maybe,	None,	and	Just	classes,	which	inherit	from	each
other	just	like	the	preceding	example.

var	Maybe	=	function(){};	

var	None	=	function(){};	

None.prototype	=	Object.create(Maybe.prototype);

None.prototype.constructor	=	None;

None.prototype.toString	=	function(){return	'None';};

var	Just	=	function(x){this.x	=	x;};

Just.prototype	=	Object.create(Maybe.prototype);

Just.prototype.constructor	=	Just;

Just.prototype.toString	=	function(){return	"Just	"+this.x;};

This	shows	that	class	inheritance	in	JavaScript	can	be	an	enabler	of	functional
programming.

A	common	mistake	is	to	pass	a	constructor	into	Object.create()	instead	of	a	prototype
object.	This	problem	is	compounded	by	the	fact	that	an	error	will	not	be	thrown	until	the
subclass	tries	to	use	an	inherited	member	function.

Foo.prototype	=	Object.create(Parent.prototype);	//	correct

Bar.prototype	=	Object.create(Parent);	//	incorrect

Bar.inheritedMethod();	//	Error:	function	is	undefined

The	function	won’t	be	found	if	the	inheritedMethod()	method	has	been	attached	to	the
Foo.prototype	class.	If	the	inheritedMethod()	method	is	attached	directly	to	the
instance	with	this.inheritedMethod	=	function(){...}	in	the	Bar	constructor,	then
this	use	of	Parent	as	an	argument	of	Object.create()could	be	correct.





Mixing	functional	and	object-oriented
programming	in	JavaScript
Object-oriented	programming	has	been	the	dominant	programming	paradigm	for	several
decades.	It	is	taught	in	Computer	Science	101	classes	around	the	world,	while	functional
programming	is	not.	It	is	what	software	architects	use	to	design	applications,	while
functional	programming	is	not.	And	it	makes	sense	too:	OOP	makes	it	easy	to
conceptualize	abstract	ideas.	It	makes	it	easier	to	write	code.

So,	unless	you	can	convince	your	boss	that	the	application	needs	to	be	all	functional,
we’re	going	to	be	using	functional	programming	in	an	object-oriented	world.	This	section
will	explore	ways	to	do	this.



Functional	inheritance
Perhaps	the	most	accessible	way	to	apply	functional	programming	to	JavaScript
applications	is	to	use	a	mostly	functional	style	within	OOP	principles,	such	as	inheritance.

To	explore	how	this	might	work,	let’s	build	a	simple	application	that	calculates	the	price	of
a	product.	First,	we’ll	need	some	product	classes:

var	Shirt	=	function(size)	{

		this.size	=	size;

};

var	TShirt	=	function(size)	{

		this.size	=	size;

};

TShirt.prototype	=	Object.create(Shirt.prototype);

TShirt.prototype.constructor	=	TShirt;

TShirt.prototype.getPrice	=	function(){

		if	(this.size	==	'small')	{

				return	5;

		}

		else	{

				return	10;

		}

}

var	ExpensiveShirt	=	function(size)	{

		this.size	=	size;

}

ExpensiveShirt.prototype	=	Object.create(Shirt.prototype);

ExpensiveShirt.prototype.constructor	=	ExpensiveShirt;

ExpensiveShirt.prototype.getPrice	=	function()	{

		if	(this.size	==	'small')	{

				return	20;

		}

		else	{

				return	30;

		}

}

We	can	then	organize	them	within	a	Store	class	as	follows:

var	Store	=	function(products)	{

		this.products	=	products;

}

Store.prototype.calculateTotal	=	function(){

		return	this.products.reduce(function(sum,product)	{

				return	sum	+	product.getPrice();

		},	10)	*	TAX;	//	start	with	$10	markup,	times	global	TAX	var

};

var	TAX	=	1.08;

var	p1	=	new	TShirt('small');

var	p2	=	new	ExpensiveShirt('large');

var	s	=	new	Store([p1,p2]);



console.log(s.calculateTotal());	//	Output:	35

The	calculateTotal()	method	uses	the	array’s	reduce()	function	to	cleanly	sum
together	the	prices	of	the	products.

This	works	just	fine,	but	what	if	we	need	a	dynamic	way	to	calculate	the	markup	value?
For	this,	we	can	turn	to	a	concept	called	Strategy	Pattern.

Strategy	Pattern
Strategy	Pattern	is	a	method	for	defining	a	family	of	interchangeable	algorithms.	It	is	used
by	OOP	programmers	to	manipulate	behavior	at	runtime,	but	it	is	based	on	a	few
functional	programming	principles:

Separation	of	logic	and	data
Composition	of	functions
Functions	as	first-class	objects

And	a	couple	of	OOP	principles	as	well:

Encapsulation
Inheritance

In	our	example	application	for	calculating	product	cost,	explained	previously,	let’s	say	we
want	to	give	preferential	treatment	to	certain	customers,	and	that	the	markup	will	have	to
be	adjusted	to	reflect	this.

So	let’s	create	some	customer	classes:

var	Customer	=	function(){};

Customer.prototype.calculateTotal	=	function(products)	{

		return	products.reduce(function(total,	product)	{

				return	total	+	product.getPrice();

		},	10)	*	TAX;

};

var	RepeatCustomer	=	function(){};

RepeatCustomer.prototype	=	Object.create(Customer.prototype);

RepeatCustomer.prototype.constructor	=	RepeatCustomer;

RepeatCustomer.prototype.calculateTotal	=	function(products)	{

		return	products.reduce(function(total,	product)	{

				return	total	+	product.getPrice();

		},	5)	*	TAX;

};

var	TaxExemptCustomer	=	function(){};

TaxExemptCustomer.prototype	=	Object.create(Customer.prototype);

TaxExemptCustomer.prototype.constructor	=	TaxExemptCustomer;

TaxExemptCustomer.prototype.calculateTotal	=	function(products)	{

		return	products.reduce(function(total,	product)	{

				return	total	+	product.getPrice();

		},	10);

};

Each	Customer	class	encapsulates	the	algorithm.	Now	we	just	need	the	Store	class	to	call



the	Customer	class’s	calculateTotal()	method.

var	Store	=	function(products)	{

		this.products	=	products;

		this.customer	=	new	Customer();

		//	bonus	exercise:	use	Maybes	from	Chapter	5	instead	of	a	default	

customer	instance

}

Store.prototype.setCustomer	=	function(customer)	{

		this.customer	=	customer;

}

Store.prototype.getTotal	=	function(){

		return	this.customer.calculateTotal(this.products);

};

var	p1	=	new	TShirt('small');

var	p2	=	new	ExpensiveShirt('large');

var	s	=	new	Store([p1,p2]);

var	c	=	new	TaxExemptCustomer();

s.setCustomer(c);

s.getTotal();	//	Output:	45

The	Customer	classes	do	the	calculating,	the	Product	classes	hold	the	data	(the	prices),
and	the	Store	class	maintains	the	context.	This	achieves	a	very	high	level	of	cohesion	and
a	very	good	mixture	of	object-oriented	programming	and	functional	programming.
JavaScript’s	high	level	of	expressiveness	makes	this	possible	and	quite	easy.



Mixins
In	a	nutshell,	mixins	are	classes	that	can	allow	other	classes	to	use	their	methods.	The
methods	are	intended	to	be	used	solely	by	other	classes,	and	the	mixin	class	itself	is	never
to	be	instantiated.	This	helps	to	avoid	inheritance	ambiguity.	And	they’re	a	great	means	of
mixing	functional	programming	with	object-oriented	programming.

Mixins	are	implemented	differently	in	each	language.	Thanks	to	JavaScript’s	flexibility
and	expressiveness,	mixins	are	implemented	as	objects	with	only	methods.	While	they	can
be	defined	as	function	objects	(that	is,	var	mixin	=	function(){...};),	it	would	be
better	for	the	structural	discipline	of	the	code	to	define	them	as	object	literals	(that	is,	var
mixin	=	{...};).	This	will	help	us	to	distinguish	between	classes	and	mixins.	After	all,
mixins	should	be	treated	as	processes,	not	objects.

Let’s	start	with	declaring	some	mixins.	We’ll	extend	our	Store	application	from	the
previous	section,	using	mixins	to	expand	on	the	classes.

var	small	=	{

		getPrice:	function()	{

				return	this.basePrice	+	6;			

		},

		getDimensions:	function()	{

				return	[44,63]

		}

}

var	large	=	{

		getPrice:	function()	{

				return	this.basePrice	+	10;			

		},

		getDimensions:	function()	{

				return	[64,83]

		}

};

We’re	not	limited	to	just	this.	Many	more	mixins	can	be	added,	like	colors	or	fabric
material.	We’ll	have	to	rewrite	our	Shirt	classes	a	little	bit,	as	shown	in	the	following
code	snippet:

var	Shirt	=	function()	{

		this.basePrice	=	1;

};

Shirt.getPrice	=	function(){

		return	this.basePrice;

}

var	TShirt	=	function()	{

		this.basePrice	=	5;

};

TShirt.prototype	=	Object.create(Shirt.prototype);

TShirt..prototype.constructor	=	TShirt;

Now	we’re	ready	to	use	mixins.

Classical	mixins



You’re	probably	wondering	just	how	these	mixins	get	mixed	with	the	classes.	The
classical	way	to	do	this	is	by	copying	the	mixin’s	functions	into	the	receiving	object.	This
can	be	done	with	the	following	extension	to	the	Shirt	prototype:

Shirt.prototype.addMixin	=	function	(mixin)	{

		for	(var	prop	in	mixin)	{

				if	(mixin.hasOwnProperty(prop))	{

						this.prototype[prop]	=	mixin[prop];

				}

		}

};

And	now	the	mixins	can	be	added	as	follows:

TShirt.addMixin(small);

var	p1	=	new	TShirt();

console.log(	p1.getPrice()	);	//	Output:	11

TShirt.addMixin(large);

var	p2	=	new	TShirt();

console.log(	p2.getPrice()	);	//	Output:	15

However,	there	is	a	major	problem.	When	the	price	of	p1	is	calculated	again,	it	comes
back	as	15,	the	price	of	a	large	item.	It	should	be	the	value	for	a	small	one!

console.log(	p1.getPrice()	);	//	Output:	15

The	problem	is	that	the	Shirt	object’s	prototype.getPrice()	method	is	getting	rewritten
every	time	a	mixin	is	added	to	it;	this	is	not	very	functional	at	all	and	not	what	we	want.

Functional	mixins
There’s	another	way	to	use	mixins,	one	that	is	more	aligned	with	functional	programming.

Instead	of	copying	the	methods	of	the	mixin	to	the	target	object,	we	need	to	create	a	new
object	that	is	a	clone	of	the	target	object	with	the	mixin’s	methods	added	in.	The	object
must	be	cloned	first,	and	this	is	achieved	by	creating	a	new	object	that	inherits	from	it.
We’ll	call	this	variation	plusMixin.

Shirt.prototype.plusMixin	=	function(mixin)	{				

		//	create	a	new	object	that	inherits	from	the	old

		var	newObj	=	this;

		newObj.prototype	=	Object.create(this.prototype);

		for	(var	prop	in	mixin)	{

				if	(mixin.hasOwnProperty(prop))	{

						newObj.prototype[prop]	=	mixin[prop];

				}

		}

		return	newObj;

};

var	SmallTShirt	=	Tshirt.plusMixin(small);	//	creates	a	new	class

var	smallT	=	new	SmallTShirt();

console.log(	smallT.getPrice()	);		//	Output:	11

var	LargeTShirt	=	Tshirt.plusMixin(large);



var	largeT	=	new	LargeTShirt();

console.log(	largeT.getPrice()	);	//	Output:	15

console.log(	smallT.getPrice()	);	//	Output:	11	(not	effected	by	2nd	mixin	

call)

Here	comes	the	fun	part!	Now	we	can	get	really	functional	with	the	mixins.	We	can	create
every	possible	combination	of	products	and	mixins.

//	in	the	real	world	there	would	be	way	more	products	and	mixins!

var	productClasses	=	[ExpensiveShirt,	Tshirt];	

var	mixins	=	[small,	medium,	large];

//	mix	them	all	together	

products	=	productClasses.reduce(function(previous,	current)	{

		var	newProduct	=	mixins.map(function(mxn)	{

				var	mixedClass	=	current.plusMixin(mxn);

				var	temp	=	new	mixedClass();

				return	temp;

		});

		return	previous.concat(newProduct);

},[]);

products.forEach(function(o){console.log(o.getPrice())});

To	make	it	more	object-oriented,	we	can	rewrite	the	Store	object	with	this	functionality.
We’ll	also	add	a	display	function	to	the	Store	object,	not	the	products,	to	keep	the
interface	logic	and	the	data	separated.

//	the	store

var	Store	=	function()	{

		productClasses	=	[ExpensiveShirt,	TShirt];

		productMixins	=	[small,	medium,	large];

		this.products	=	productClasses.reduce(function(previous,	current)	{

				var	newObjs	=	productMixins.map(function(mxn)	{

						var	mixedClass	=	current.plusMixin(mxn);

						var	temp	=	new	mixedClass();

						return	temp;

				});

				return	previous.concat(newObjs);

		},[]);

}

Store.prototype.displayProducts	=	function(){

		this.products.forEach(function(p)	{

				$('ul#products').append('<li>'+p.getTitle()+':	

$'+p.getPrice()+'</li>');

		});

}

And	all	we	have	to	do	is	create	a	Store	object	and	call	its	displayProducts()	method	to
generate	a	list	of	products	and	prices!

<ul	id="products">

		<li>small	premium	shirt:	$16</li>

		<li>medium	premium	shirt:	$18</li>

		<li>large	premium	shirt:	$20</li>

		<li>small	t-shirt:	$11</li>

		<li>medium	t-shirt:	$13</li>



		<li>large	t-shirt:	$15</li>

</ul>

These	lines	need	to	be	added	to	the	product	classes	and	mixins	to	get	the	preceding	output
to	work:

Shirt.prototype.title	=	'shirt';

TShirt.prototype.title	=	't-shirt';

ExpensiveShirt.prototype.title	=	'premium	shirt';

//	then	the	mixins	got	the	extra	'getTitle'	function:

var	small	=	{

		...

		getTitle:	function()	{

				return	'small	'	+	this.title;	//	small	or	medium	or	large

		}

}

And,	just	like	that,	we	have	an	e-commerce	application	that	is	highly	modular	and
extendable.	New	shirt	styles	can	be	added	absurdly	easily—just	define	a	new	Shirt
subclass	and	add	to	it	the	Store	class’s	array	product	classes.	Mixins	are	added	in	just	the
same	way.	So	now	when	our	boss	says,	“Hey,	we	have	a	new	type	of	shirt	and	a	coat,	each
available	in	the	standard	colors,	and	we	need	them	added	to	the	website	before	you	go
home	today”,	we	can	rest	assured	that	we’ll	not	be	staying	late!





Summary
JavaScript	has	a	high	level	of	expressiveness.	This	makes	it	possible	to	mix	functional	and
object-oriented	programming.	Modern	JavaScript	is	not	solely	OOP	or	functional—it	is	a
mixture	of	the	two.	Concepts	such	as	Strategy	Pattern	and	mixins	are	perfect	for
JavaScript’s	prototype	structure,	and	they	help	to	prove	that	today’s	best	practices	in
JavaScript	share	equal	amounts	of	functional	programming	and	object-oriented
programming.

If	you	were	to	take	away	only	one	thing	from	this	book,	I	would	want	it	to	be	how	to	apply
functional	programming	techniques	to	real-world	applications.	And	this	chapter	showed
you	how	to	do	exactly	that.





Appendix	A.	Common	Functions	for
Functional	Programming	in	JavaScript
This	Appendix	covers	common	functions	for	functional	programming	in	JavaScript:

Array	Functions:

var	flatten	=	function(arrays)	{

		return	arrays.reduce(	function(p,n){

				return	p.concat(n);

		});

};

var	invert	=	function(arr)	{

		return	arr.map(function(x,	i,	a)	{

				return	a[a.length	-	(i+1)];

		});

};

Binding	Functions:

var	bind	=	Function.prototype.call.bind(Function.prototype.bind);

var	call	=	bind(Function.prototype.call,	Function.prototype.call);

var	apply	=	bind(Function.prototype.call,	Function.prototype.apply);

Category	Theory:

var	checkTypes	=	function(	typeSafeties	)	{

		arrayOf(func)(arr(typeSafeties));

		var	argLength	=	typeSafeties.length;

		return	function(args)	{

				arr(args);

				if	(args.length	!=	argLength)	{

						throw	new	TypeError('Expected	'+	argLength	+	'	arguments');

				}

				var	results	=	[];

				for	(var	i=0;	i<argLength;	i++)	{

						results[i]	=	typeSafeties[i](args[i]);

				}

				return	results;

		};

};

var	homoMorph	=	function(	/*	arg1,	arg2,	...,	argN,	output	*/	)	{

		var	before	=	checkTypes(arrayOf(func)

(Array.prototype.slice.call(arguments,	0,	arguments.length-1)));

		var	after	=	func(arguments[arguments.length-1])

		return	function(middle)	{

				return	function(args)	{

						return	after(middle.apply(this,	

before([].slice.apply(arguments))));

				};

		};

};



Composition:

Function.prototype.compose	=	function(prevFunc)	{

		var	nextFunc	=	this;

		return	function()	{

				return	nextFunc.call(this,prevFunc.apply(this,arguments));

		};

};

Function.prototype.sequence		=	function(prevFunc)	{

		var	nextFunc	=	this;

		return	function()	{

				return	prevFunc.call(this,nextFunc.apply(this,arguments));

		};

};

Currying:

Function.prototype.curry	=	function	(numArgs)	{

		var	func	=	this;

		numArgs	=	numArgs	||	func.length;

		//	recursively	acquire	the	arguments

		function	subCurry(prev)	{

				return	function	(arg)	{

						var	args	=	prev.concat(arg);

						if	(args.length	<	numArgs)	{

								//	recursive	case:	we	still	need	more	args

								return	subCurry(args);

						}

						else	{

								//	base	case:	apply	the	function

								return	func.apply(this,	args);

						}

				};

		};

		return	subCurry([]);

};

Functors:

//	map	::	(a	->	b)	->	[a]	->	[b]

var	map	=	function(f,	a)	{

		return	arr(a).map(func(f));

}

//	strmap	::	(str	->	str)	->	str	->	str

var	strmap	=	function(f,	s)	{

		return	str(s).split('').map(func(f)).join('');

}

//	fcompose	::	(a	->	b)*	->	(a	->	b)

var	fcompose	=	function()	{

		var	funcs	=	arrayOf(func)(arguments);

		return	function()	{

				var	argsOfFuncs	=	arguments;

				for	(var	i	=	funcs.length;	i	>	0;	i	-=	1)	{

						argsOfFuncs		=	[funcs[i].apply(this,	args)];



				}

				return	args[0];

		};

};

Lenses:

var	lens	=	function(get,	set)	{

		var	f	=	function	(a)	{return	get(a)};

		f.get	=	function	(a)	{return	get(a)};	

		f.set	=	set;

		f.mod	=	function	(f,	a)	{return	set(a,	f(get(a)))};

		return	f;

};

//	usage:

var	first	=	lens(

		function	(a)	{	return	arr(a)[0];	},	//	get

		function	(a,	b)	{	return	[b].concat(arr(a).slice(1));	}	//	set

);

Maybes:

var	Maybe	=	function(){};	

Maybe.prototype.orElse	=	function(y)	{

		if	(this	instanceof	Just)	{

				return	this.x;

		}

		else	{

				return	y;

		}

};

var	None	=	function(){};	

None.prototype	=	Object.create(Maybe.prototype);

None.prototype.toString	=	function(){return	'None';};

var	none	=	function(){return	new	None()};

//	and	the	Just	instance,	a	wrapper	for	an	object	with	a	value

var	Just	=	function(x){return	this.x	=	x;};

Just.prototype	=	Object.create(Maybe.prototype);

Just.prototype.toString	=	function(){return	"Just	"+this.x;};

var	just	=	function(x)	{return	new	Just(x)};

var	maybe	=	function(m){

		if	(m	instanceof	None)	{

				return	m;

		}

		else	if	(m	instanceof	Just)	{

				return	just(m.x);

		}

		else	{

				throw	new	TypeError("Error:	Just	or	None	expected,	"	+	m.toString()	

+	"	given.");	

		}

};

var	maybeOf	=	function(f){

		return	function(m)	{



				if	(m	instanceof	None)	{

						return	m;

				}

				else	if	(m	instanceof	Just)	{

						return	just(f(m.x));

				}

				else	{

						throw	new	TypeError("Error:	Just	or	None	expected,	"	+	

m.toString()	+	"	given.");	

				}

		};

};

Mixins:

Object.prototype.plusMixin	=	function(mixin)	{

		var	newObj	=	this;

		newObj.prototype	=	Object.create(this.prototype);

		newObj.prototype.constructor	=	newObj;

		for	(var	prop	in	mixin)	{

				if	(mixin.hasOwnProperty(prop))	{

						newObj.prototype[prop]	=	mixin[prop];

				}

		}

		return	newObj;

};

Partial	Application:

function	bindFirstArg(func,	a)	{

		return	function(b)	{

				return	func(a,	b);

		};

};

Function.prototype.partialApply	=	function(){

		var	func	=	this;	

		args	=	Array.prototype.slice.call(arguments);

		return	function(){

				return	func.apply(this,	args.concat(

						Array.prototype.slice.call(arguments)

				));

		};

};

Function.prototype.partialApplyRight	=	function(){

		var	func	=	this;	

		args	=	Array.prototype.slice.call(arguments);

		return	function(){

				return	func.apply(

						this,

						Array.protype.slice.call(arguments,	0)

				.concat(args));

		};

};

Trampolining:



var	trampoline	=	function(f)	{

		while	(f	&&	f	instanceof	Function)	{

				f	=	f.apply(f.context,	f.args);

		}

		return	f;

};

var	thunk	=	function	(fn)	{

		return	function()	{

				var	args	=	Array.prototype.slice.apply(arguments);

				return	function()	{	return	fn.apply(this,	args);	};

		};

};

Type	Safeties:

var	typeOf	=	function(type)	{

		return	function(x)	{

				if	(typeof	x	===	type)	{

						return	x;

				}

				else	{

						throw	new	TypeError("Error:	"+type+"	expected,	"+typeof	x+"	

given.");

				}

		};

};

var	str	=	typeOf('string'),

		num	=	typeOf('number'),

		func	=	typeOf('function'),

		bool	=	typeOf('boolean');

var	objectTypeOf	=	function(name)	{

		return	function(o)	{

				if	(Object.prototype.toString.call(o)	===	"[object	"+name+"]")	{

						return	o;

				}

				else	{

						throw	new	TypeError("Error:	'+name+'	expected,	something	else	

given.");	

				}

		};

};

var	obj	=	objectTypeOf('Object');

var	arr	=	objectTypeOf('Array');

var	date	=	objectTypeOf('Date');

var	div	=	objectTypeOf('HTMLDivElement');

//	arrayOf	::	(a	->	b)	->	([a]	->	[b])

var	arrayOf	=	function(f)	{

		return	function(a)	{

				return	map(func(f),	arr(a));

		}

};



Y-combinator:

var	Y	=	function(F)	{

		return	(function	(f)	{

				return	f(f);

		}(function	(f)	{

				return	F(function	(x)	{

						return	f(f)(x);

				});

		}));

};

//	Memoizing	Y-Combinator:

var	Ymem	=	function(F,	cache)	{

		if	(!cache)	{

				cache	=	{}	;	//	Create	a	new	cache.

		}

		return	function(arg)	{

				if	(cache[arg])	{

						//	Answer	in	cache

						return	cache[arg]	;

				}

				//	else	compute	the	answer

				var	answer	=	(F(function(n){

						return	(Ymem(F,cache))(n);

				}))(arg);	//	Compute	the	answer.

				cache[arg]	=	answer;	//	Cache	the	answer.

				return	answer;

		};

};





Appendix	B.	Glossary	of	Terms
This	appendix	covers	some	of	the	important	terms	that	are	used	in	this	book:

Anonymous	function:	A	function	that	has	no	name	and	is	not	bound	to	any
variables.	It	is	also	known	as	a	Lambda	Expression.
Callback:	A	function	that	can	be	passed	to	another	function	to	be	used	in	a	later
event.
Category:	In	terms	of	Category	Theory,	a	category	is	a	collection	of	objects	of	the
same	type.	In	JavaScript,	a	category	can	be	an	array	or	object	that	contains	objects
that	are	all	explicitly	declared	as	numbers,	strings,	Booleans,	dates,	objects,	and	so
on.
Category	Theory:	A	concept	that	organizes	mathematical	structures	into	collections
of	objects	and	operations	on	those	objects.	The	data	types	and	functions	used	in
computer	programs	form	the	categories	used	in	this	book.
Closure:	An	environment	such	that	functions	defined	within	it	can	access	local
variables	that	are	not	available	outside	it.
Coupling:	The	degree	to	which	each	program	module	relies	on	each	of	the	other
modules.	Functional	programming	reduces	the	amount	of	coupling	within	a	program.
Currying:	The	process	of	transforming	a	function	with	many	arguments	into	a
function	with	one	argument	that	returns	another	function	that	can	take	more
arguments,	as	needed.	Formally,	a	function	with	N	arguments	can	be	transformed	into
a	function	chain	of	N	functions,	each	with	only	one	argument.
Declarative	programming:	A	programming	style	that	expresses	the	computational
logic	required	to	solve	the	problem.	The	computer	is	told	what	the	problem	is	rather
than	the	procedure	required	to	solve	it.
Endofunctor:	A	functor	that	maps	a	category	to	itself.
Function	composition:	The	process	of	combining	many	functions	into	one	function.
The	result	of	each	function	is	passed	as	an	argument	to	the	next,	and	the	result	of	the
last	function	is	the	result	of	the	whole	composition.
Functional	language:	A	computer	language	that	facilitates	functional	programming.
Functional	programming:	A	declarative	programming	paradigm	that	focuses	on
treating	functions	as	mathematical	expressions	and	avoids	mutable	data	and	changes
in	state.
Functional	reactive	programming:	A	style	of	functional	programming	that	focuses
on	reactive	elements	and	variables	that	change	over	time	in	response	to	events.
Functor:	A	mapping	between	categories.
Higher-order	function:	A	function	that	takes	either	one	or	more	functions	as	input,
and	returns	a	function	as	its	output.
Inheritance:	An	object-oriented	programming	capability	that	allows	one	class	to
inherit	member	variables	and	methods	from	another	class.
Lambda	expressions:	See	Anonymous	function.
Lazy	evaluation:	A	computer	language	evaluation	strategy	that	delays	the	evaluation
of	an	expression	until	its	value	is	needed.	The	opposite	of	this	strategy	is	called	eager



evaluation	or	greedy	evaluation.	Lazy	evaluation	is	also	known	as	call	by	need.
Library:	A	set	of	objects	and	functions	that	have	a	well-defined	interface	that	allows
a	third-party	program	to	invoke	their	behavior.
Memoization:	The	technique	of	storing	the	results	of	expensive	function	calls.	When
the	function	is	called	later	with	the	same	arguments,	the	stored	result	is	returned
rather	than	computing	the	result	again.
Method	chain:	A	pattern	in	which	many	methods	are	invoked	side	by	side	by
directly	passing	the	output	of	one	method	to	the	input	of	the	next.	This	avoids	the
need	to	assign	the	intermediary	values	to	temporary	variables.
Mixin:	An	object	that	can	allow	other	objects	to	use	its	methods.	The	methods	are
intended	to	be	used	solely	by	other	objects,	and	the	mixin	object	itself	is	never	to	be
instantiated.
Modularity:	The	degree	to	which	a	program	can	be	broken	down	into	independent
modules	of	code.	Functional	programming	increases	the	modularity	of	programs.
Monad:	A	structure	that	provides	the	encapsulation	required	by	functors.
Morphism:	A	pure	function	that	only	works	on	a	certain	category	and	always	returns
the	same	output	when	given	a	specific	set	of	inputs.	Homomorphic	operations	are
restricted	to	a	single	category,	while	polymorphic	operations	can	operate	on	multiple
categories.
Partial	application:	The	process	of	binding	values	to	one	or	more	arguments	of	a
function.	It	returns	a	partially	applied	function,	which	in	turn	accepts	the	remaining,
unbound	arguments.
Polyfill:	A	function	used	to	augment	prototypes	with	new	functions.	It	allows	us	to
call	our	new	functions	as	methods	of	the	previous	function.
Pure	function:	A	function	whose	output	value	depends	only	on	the	arguments	that
are	the	input	to	the	function.	Thus,	calling	a	function,	f,	twice	with	the	same	value	of
an	argument,	x,	will	produce	the	same	result,	f(x),every	time.
Recursive	function:	A	function	that	calls	itself.	Such	functions	depend	on	solutions
to	smaller	instances	of	the	same	problem	to	compute	the	solution	to	the	larger
problem.	Like	iteration,	recursion	is	another	way	to	repeatedly	call	the	same	block	of
code.	But,	unlike	iteration,	recursion	requires	that	the	code	block	define	the	case	in
which	the	repeating	code	calls	should	terminate,	known	as	the	base	case.
Reusability:	The	degree	to	which	a	block	of	code,	usually	a	function	in	JavaScript,
can	be	reused	in	other	parts	of	the	same	program	or	in	other	programs.
Self-invoking	function:	An	anonymous	function	that	is	invoked	immediately	after	it
has	been	defined.	In	JavaScript,	this	is	achieved	by	placing	a	pair	of	parentheses	after
the	function	expression.
Strategy	pattern:	A	method	used	to	define	a	family	of	interchangeable	algorithms.
Tail	recursion:	A	stack-based	implementation	of	recursion.	For	every	recursive	call,
there	is	a	new	frame	in	the	stack.
Toolkit:	A	small	software	library	that	provides	a	set	of	functions	for	the	programmer
to	use.	Compared	to	a	library,	a	toolkit	is	simpler	and	requires	less	coupling	with	the
program	that	invokes	it.
Trampolining:	A	strategy	for	recursion	that	provides	tail-call	elimination	in



programming	languages	that	do	not	provide	this	feature,	such	as	JavaScript.
Y-combinator:	A	fixed-point	combinator	in	Lambda	calculus	that	eliminates	explicit
recursion.	When	it	is	given	as	input	to	a	function	that	returns	a	recursive	function,	the
Y-combinator	returns	the	fixed	point	of	that	function,	which	is	the	transformation
from	the	recursive	function	to	a	non-recursive	function.
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